Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10591
標題: 低缺陷氮化鎵磊晶模板之製程開發與特性研究
Fabrication and Characterization of Low-Defect-Density GaN Templates
作者: 諶思廷
Chen, Shih-Ting
關鍵字: GaN
氮化鎵
maskless
dislocation
low-defect-density
templates
無光罩
差排
低缺陷
模板
出版社: 材料科學與工程學系所
引用: [1] N. Holonyak, Jr., and S. F. Bevaqua, “Coherent (visible) light emission from Ga(As1–xPx) junctions,” Appl. Phys. Lett. vol.1, p.82, 1962. [2] K. H. Kim, Z. Y. Fan, M. Khizar, M. L. Nakarmi, J. Y. Lin, and H. X. Jiang, “AlGaN-based ultraviolet light-emitting diodes grown on AlN epilayers,” Appl. Phys. Lett. vol.85, p.4777, 2004. [3] G.E. Stillman, V.M. Robbins, and N. Tabatabaie, “Ⅲ-V compound. semiconductor devices: Optical detectors,” IEEE Trans. Electron Devices vol.31, p.1643, 1984. [4] Shuji Nakamura, “In situ monitoring of GaN growth using interference effects,” Jpn. J. Appl. Phys. vol.30, p.1620, 1991. [5] J. I. Pankove, “Gallium nitride (GaN) I,” Academic press, San Diego, 1998. [6] H. P. Maraska, D. A. Stevenson, and J. I. Pankove, “Violet luminescence of Mg-doped GaN,” Appl. Phys. Lett. vol.22, p.303, 1973. [7] S. Yoshida, S. Misawa, and S. Gonda, “Improvements on the electrical and luminescent properties of reactive molecular beam epitaxially grown GaN films by using AlN-coated sapphire substrates,” Appl. Phy. Lett. vol.42, p.427, 1983. [8] H. Amanoet, T. Asahi, and I. Akasaki, “Stimulated emission near ultraviolet at room temperature from a GaN film grown on sapphire by MOVPE using an AlN buffer layer,” Jpn. J. Appl. Phys. vol.29, p.205, 1990. [9] H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, “P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI),” Jpn. J. Appl. Phys. vol.28, L.2112, 1989. [10] S. Nakamura, “GaN growth using GaN buffer layer,” Jpn. J. Appl. Phys. vol.30, p.1705, 1991. [11] S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, “Thermal annealing effects on p-type Mg-doped GaN films,” Jpn. J. Appl. Phys. vol.31, L.139, 1992. [12] T. Shibata, H. Sone, K. Yahashi, M. Yamaguchi, K. Hiramatsu, N. Sawaki, and N. Itoh, “Hydride vapor-phase epitaxy growth of high-quality GaN bulk single crystal by epitaxial lateral overgrowth,” J. Cryst. Growth vol.189, p.67, 1998. [13] P. Fini, L. Zhao, B. Moran, H. Marchand, J. P. Ibbetson, M. Hansen, S. P. DenBaars, U. K. Mishra, and J. S. Speck , “High-quality coalescence of laterally overgrown GaN stripes on GaN/sapphire seed layers”, Appl. Phys. Lett. vol.75, p.1706, 1999. [14] D. S. Wuu, W. K. Wang, K. S. Wen, S. C. Huang, S. H. Lin, S. Y. Huang, C. F. Lin, and R. H. Horng, “Defect reduction and efficiency improvement of near-ultraviolet emitters via laterally overgrown GaN on a GaN/patterned sapphire template,” Appl. Phys. Lett. vol.89, p.161105, 2006. [15] 謝銘洋,徐宏昇,陳哲宏,陳逸南,“專利法解讀,”元照出版有限公司, 2002. [16] C. Y. Hwang, Ph. D. Mechenics, and Materials Sciance, Rutgers University, Piscataway, NJ, 1995. [17] K. N. Tu, J. W. Mayer, and L. C. Feldman: I Electronic Thin Film Science: For Electrical Engineers and Materials Scientists, (Pearson Education POD), p355, 1996. [18] C. D. Thurmond, and R. A. Logan, “The equilibrium pressure of N2 over GaN,” J. Electrochem. Soc. vol.119, p.622 , 1972. [19] S. Nakamura, “InGaN/Gan/AlGaN-based laser diodes with an estimated lifetime of longer than 10,000 hours” MRS Bulletin vol.23, p.37, 1998. [20] S. Nakamura, and G. Fasol, “The blue laser diode”, Springer Berlin, p.15, 1997. [21] D. Hull, and D. J. Bacon, “Introduction to dislocations,” (Pergamon Press, Oxford.), p.234, 1989. [22] 李玉柱, “發光二極體之薄膜應力與光電特性的關係,”成功大學機械工程學系研究所碩士論文, 2002. [23] X. H. Wu, C. R. Elsass, A. Abare, M. Mack, S. Keller, P. M. Petroff, S. P. DenBaars, and J. S. Speck, “Structural origin of V-defects and correlation with localized excitonic centers in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. vol.72, p.692, 1998. [24] S. Keller, G. Parish, J. S. Speck, S. P. DenBaars, and U. K. Mishra, “Dislocation reduction in GaN films through selective island growth of InGaN,” Appl. Phys. Lett. vol.77, p.2665, 2000. [25] M. Kneissl, D. P. Bour, L. Romano, C. G. Van de Walle, J. E. Northrup, W. S. Wong, D. W. Treat, M. Teepe, Tanya Schmidt, and Noble M. Johnson, “Performance and degradation of continuous-wave InGaN multiple-quantum-well laser diodes on epitaxially laterally overgrown GaN substrates,” Appl. Phys. Lett. vol.77, p.1931, 2000. [26] H. K. Cho, and J. Y. Lee, “Formation mechanism of V defects in the InGaN/GaN multiple quantum wells grown on GaN layers with low threading dislocation density,” Appl. Phys. Lett. vol.79, p.251, 2001. [27] H. K. Cho, and J. Y. Lee, “Influence of strain-induced indium clustering on characteristics of InGaN/GaN multiple quantum wells with high indium composition,” J. Appl. Phys. vol.91, p.1104, 2002. [28] 李政鴻, “AlInGaN UV LED 元件製作,” 電光先鋒, p1, 2007. [29] D. Morita, M. Yamamoto, K. Akaishi, K. Matoba, K. Yasutomo, Y. Kasai, M. Sano, S. I. Nagahama, and T. Mukai, “Watt-class high-output-power 365 nm ultraviolet light-emitting diodes,” Jpn. J. Appl. Phys. vol.43, L.5945, 2004. [30] T. Hino, S. Tomiya, T. Miyajima, K. Yanashima, S. Hashimoto, and M. Ikeda, “Characterization of threading dislocations in GaN epitaxial layers,” Appl. Phys. Lett. vol.76, p.3421, 2000. [31] J. E. Ayers, “The measurement of threading dislocation densities in semiconductor crystals by X-ray diffraction,” J. Crystal Growth vol.135, p.71, 1994. [32] T. Metzger, R. Hopler, E. Born, O. Ambacher, M. Stutzmann, R. Stommer, M. Schuster, H. Gobel, S. Christiansen, M. Albrecht, and H. P . Strunk, “Defect structure of epitaxial GaN films determined by transmission electron microscopy and triple-axis X-ray diffractometry,” Philos. Mag. A. vol.77, p.1013, 1998. [33] B. Heying, X. H. Wu, S. Keller, Y. Li, D. Kapolnek, B. P. Keller, S. P. DenBaars, and J. S. Speck, “Role of threading dislocation structure on the x-ray diffraction peak widths in epitaxial GaN films,” Appl. Phys. Lett. vol.68, p.643, 1996. [34] H. Heinke, V. Kirchner, S. Einfeldt, and D. Hommel, “Anzlysis of the defect structure of epitaxial GaN,” Phys. Status Solidi A. vol.176, p.391, 1999. [35] R. Chierchia, T. BWttcher, H. Heinke, S. Einfeldt, S. Figge, and D. Hommel, “Microstructure of heteroepitaxial GaN revealed by x-ray diffraction,” J. Appl. Phys. vol.93, p.8918, 2003. [36] K. D. Beyer, “Chem-mech polishing method for producing coplanar metal/insulator films on a substrate”, U. S. Patent. 4944836, 1990. [37] F. B. Kaufman, D.B. Thompson, R. E. J. Broadie, M. A. Jaso, W. L. Guthrie, D. J. Pearson and M. B. Small, “Chemical-mechanical polishing for fabricating patterned W metal features as chip interconnects,” J. Electrochem. Soc. vol.138, p.3460, 1991. [38] J. M. Steigerwald, S. P. Murarka, and R. J. Gutmann, “Chemical mechanical planarization of microelectronic meterials,” John Wiley and Sons, Inc. p.37, 1997. [39] N. J. Brown, P. C. Baker, and R. T. Maney, “Optical polishing of metals,” Proc. SPIE. vol.306, p.42, 1981. [40] L. M. Cook, “Chemical processes in glass polishing,” J. Non-cryst. Solids. vol.120, p.152, 1990. [41] Izumitani: in Treatise on Materials Science and Technology, ed. M. Tomozawa and R. Doremus, Academic Press, New York, p.115, 1979. [42] F. G. Shi, and B. Zhao, “Modeling of chemical-mechanical polishing with soft pads”, Appl. Phys. A. vol.67, p.249, 1998. [43] W. T. Tseng, Y. T. Wang, “Re-examination of pressure and speed dependences of removal rate during chemical-mechanical polishing processes,” J. Electrochem. Soc. vol.144, L.15, 1997. [44] S. K. Mathis, A. E. Romanov, L.F. Chen, G. E. Beltz, W. Pompe, and J. S. Speck, “Modeling of threading dislocation reduction in growing GaN layers,” J. Crystal Growth vol.231, p.371, 2001. [45] T. Paskova, E. valcheva, P. P. Paskov. “HVPE-GaN: comparison of emission properties and microstructure of films grown on different laterally overgrown templates,” Diamond Relat. Mater. vol.13, p.1125, 2004. [46] U. Kaufmann, M. Kunzer, H. Obloh, “Origin of defect-related photoluminescence bands in doped and nominally undoped GaN,” Phys. Rev. B. vol.59, p.5561, 1999. [47] J. Neugebauer, Chris G. Van de Wale. “Gallium vacancies and the yellow luminescence in GaN,” Appl. Phys. Lett. vol.69, p.503, 1996. [48] M. Yoshimoto, J. Saraie, and S. Nakamura, “Low-temperature microscopic photoluminescence images of epitaxially laterally overgrown GaN,” Jpn. J. Appl. Phys. vol.40, L.386, 2001. [49] X. Li, P. W. Bohn, “Impurity states are the origin of yellow-band emission in GaN structures produced by epitaxial lateral overgrowth,” Appl. Phys. Lett. vol.75, p.4049, 1999. [50] J. Hang, Y. Shen, and Z. Wang, “Effects of residual C and O impurities on photoluminescence in undoped GaN epilayers,” Materials Science and Engineering B. vol.91, p.303, 2002. [51] H. C. Yang, T. Y. Chen, and Y. F. Chen,“Nature of the 2.8-eV photoluminescence band in Si-doped GaN,”Phys. Rev. B. vol.62, p.12593, 2000. [52] P. Gibart, B. Beaumont, and Chua Soo-Jin, “Spatially resolved photoluminescence of laterally overgrown GaN,”J. Cryst. Growth vol.201/202, p.365, 1999. [53] Yong-Hoon Cho, H. M. Kim, T. W. Kang, J. J. Song, and W. Yang, “Spatially resolved cathodoluminescence of laterally overgrown GaN pyramids on (111) silicon substrate: Strong correlation between structural and optical properties,” Appl. Phys. Lett. vol.80, p.1141, 2002.
摘要: 本論文為開發低缺陷氮化鎵磊晶模板之製程,並探討材料特性與光學特性。製程特色為利用無光罩技術製作阻擋層,克服了二次對準上的困難,首先利用選擇性蝕刻法對氮化鎵磊晶膜表面進行差排選擇性蝕刻,而經由掃描式電子顯微鏡發現蝕刻後氮化鎵磊晶膜表面顯露出α型的蝕刻孔洞,此孔洞即為螺旋差排。再於蝕刻孔洞中填滿阻擋層後再移除多餘阻擋層,且經由掃描式電子顯微鏡與能量散佈光譜觀察出孔洞中確實填滿阻擋層,最後得到低缺陷氮化鎵磊晶模板。 我們分別比較使用與沒使用低缺陷氮化鎵磊晶模板成長氮化鎵磊晶膜之缺陷差異。以高解析雙晶繞射儀、蝕刻孔洞密度法、光激發光光譜圖、陰極螢光光譜圖與影像圖分析結果顯示,有使用低缺陷氮化鎵磊晶模板成長之氮化鎵磊晶膜,其高解析雙晶繞射對稱面(0002)面 rocking curve半高寬降低20%,非對稱面(30-32)面rocking curve半高寬降低21%,蝕刻孔洞密度可有效降低至2.3×105 cm-2,光激發光譜半高寬亦降低至7.06 nm,陰極螢光影像亦有缺陷集中與降低的趨勢。最後我們利用穿透式電子顯微鏡之影像,證實氮化鎵薄膜成長於低缺陷氮化鎵磊晶模板,可阻擋差排向上延伸,使差排彎曲,降低差排缺陷密度,進而提升氮化鎵磊晶薄膜的品質。
The purpose of this study is to characterize low-defect-density GaN templates fabricated in our laboratory and assess their material as well as optical properties. The fabrication of low-defect-density GaN templates was carried out by selection etching technique and removing technology. The etched pits on the GaN surface shown in scanning electron microscopy (SEM) images were considered as screw dislocations, which were intentionally subjected to remove process to expose the surface without screw dislocations. The observations form Energy Dispersive System (EDS) and SEM images confirmed that low-defect-density GaN templates were successfully fabricated in this study. The difference on material and optical properties between regrown GaN on low-defect-density GaN templates and on sapphire substrate was evaluated by using High-resolution x-ray diffraction (XRD), Etch-pits density (EPD), Photoluminescence (PL), and Cathodoluminescence (CL). The GaN grown on low-defect-density GaN templates had lower EPDs of around 2.3×105 cm-2 as compared with that of the GaN regrown on sapphire substrate (ca. 1.5×106 cm-2). The full width at half maximum (FWHM) of GaN (0002) and (30-32) rocking curve were decreased by 20% and 21%, respectively while depositing on low-defect-density GaN templates. Furthermore, PL spectra and CL images implied the better quality of regrown on low-defect-density GaN templates. The transmission-electron-microscopy (TEM) images gave us an solid evidence that the dislocation density of regrown was significantly reduced with low-defect-density GaN templates. These TDDs can be terminated by the mask.
URI: http://hdl.handle.net/11455/10591
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館

Show full item record
 
TAIR Related Article
 
Citations:


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.