Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10593
標題: 低溫退火效應對錳添加氫化非晶矽薄膜之磁、電性研究
Low Temperature Annealing Effects on Magnetic and Electrical Properties of a-SiMn:H Thin Films
作者: 陳明淵
Chen, Ming-Yuan
關鍵字: dilute magnetic semiconductors
稀磁半導體
amorphous silicon
low temperature annealing
非晶矽
低溫退火
出版社: 材料科學與工程學系所
引用: [1] T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science 287, 1019 (2000). [2] K. Ando, Appl. Phys. Lett. 82, 100 (2003). [3] Qingyu Xu, Heidemarie Schmidt, Lars Hartmann, Holger Hochmuth, Michael Lorenz,Annette Setzer, Pablo Esquinazi, Christoph Meinecke, and Marius Grundmann, Appl. Phys.Lett. 91, 092503 (2007). [4] R. C. Chittick, J. H. Alexander, and H. F. Sterling, J. Electrochem. Soc. 116, 77 (1969). [5] Hydrogen amorphous silicon, R. W. Cahn, E. A. Davis, I. M. Ward, p51~p52. [6] H. Ohno, Science 281, 951 (1998). [7] T. Baron, S. Tatarenko, K. Saminadayar, N. Magnea, and J. Fontenille, Appl. Phys. Lett., Vol. 65, p1284-p1286 (1994). [8] A. Haury, A. Wasiela, A. Arnoult, J. Cibert, S. Tatarenko, T. Dietl, and Y. Merle d''Aubigné, Phys. Rev. Lett., Vol. 79, pp.511-514 (1997). [9] H. Muenkata, H. Ohno, S. von Moluar, Armin Segmuller, L. L. Chang, L. Esaki, Phys. Rev. Lett. 63, 1849 (1989). [10] H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto, and Y. Iye, Appl. Phys. Lett. 69, 363 (1996). [11] K. Minegishi, Y. Koiwai, Y. Kikuchi, K. Yano, M. Kasuga, and A. Shimizu, Jpn. J. Appl. Phys., Part 2 36, L1453 (1997). [12] K. Sato and H. Katayama-Yoshida, Jpn. J. Appl. Phys., Part 2 39, L555 (2000). [13] Shinobu Ohya, Kenichi Ohno and Masaaki Tanaka, Appl. Phys. Lett. 90, 112503 (2007). [14] http://61.220.36.146/download/2006demo/chap21demo.pdf [15] The Science and Enginnering of materials, Donald R. Askeland, Pradeep p. Phule,p811~p817. [16] Hydrogen amorphous silicon, R. W. Cahn, E. A. Davis, I. M. Ward, p6~p14. [17] 盧志遠,”非晶型半導體之奧秘”,科學月刊 (1979). [18] H. H. Woodbury and G. W. Ludwig, Phys. Rev. 117, 102 (1960). [19] G. M. Dalpian, Antonio J. R. da Silva, and A. Fazzio, Phys. Rev. B 68, 113310 (2003). [20] O. Thomas, J. P. Senateur, R. Madar, O. Laborde, and E. rosencher, Solide State Commun. 55, 629 (1985). [21] Y. Ishikama, K. Tajima and M. Roth, Solid State Commun. 19, 525 (1976). [22] C. Zener etal., Phys. Rev. 81, 440 (1950). [23] H. Akai, Phys. Rev. Lett. 81, 3002 (1998). [24] J. Konig, H. H. Lin, A. H. MacDonald, Phys. Rev. Lett. 84, 5268 (2000). [25] V. I. Litvinov, V. K. Dugaev, Phys. Rev. Lett. 86, 5596 (2001). [26] M. Berciu, R. N. Bhatt, Phys. Rev. Lett. 87, 107203(2001). [27] A. Kaminski, S. Das. Sarma, Phys. Rev. Lett. 88, 247202 (2002). [28] H. Ohno, D. Chiba, F. Matsukura, T. Omiya, E. Abe, T. Dietl,Y. Ohno and K. Ohtani, Nature 408, 944 (2000). [29] M. Yamanouchi, D. Chiba, F. Matsukura, and H. Ohno, Nature 428, 539 (2004). [30] Y. Ohno, D. K. Young, B. Beschoten, F. Matsukura, H. Ohno, D. D. Awscholom, Nature 402, 790 (1999). [31] M. Tanaka, Y. Higo, Phys. Rev. Lett. 87, 026602 (2001). [32] K. F. Kid, M. B. Stone, K. C. Ku, O. Maksimov, P. Schiffer, N. Samarth, T. C. Shih, and C. J. Palmstrøm, Appl. Phys. Lett. 85, 1556 (2004). [33] Y. D. Park, A. T. Hanbicki, S. C. Erwin, C. S. Hellberg, J. M. Sullivan, J. E.Mattson, T. F. Ambrose, A. Wilson, G. Spanos, and B. T. Jonker, Science 295, 651 (2002). [34] V. Ko, K. L. Teo, T. Liew, T. C. Chong, Appl. Phys. Lett. 89, 042504 (2006). [35] Hongliang Li, Yihong Wu, Zaibing Guo, Ping LuO, Shijie Wang, J. Appl. Phys. 100, 103908 (2006). [36] Jiang-xia Deng, Yu-feng Tian, Shi-shen Yan, Qiang Cao, Guo-lei Liu, Yan-xue Chen, Liang-mo Mei, Gang Ji, and Ze Zhang, J. Appl. Phys. 104, 013905 (2008). [37] W. B. Paek, J. Kim, S. H. Lim, Phys. Stat. sol. B 241, 1521 (2004). [38] S. H. Song, S. H. Lim, J. Mag. Mag. Mat. 304, 64 (2006). [39] Sunglae Cho, Choi S, Hong SC, Kim Y, Ketterson JB, Kim BJ, Kim YC, Jung JH, Phys. Rev. B 66, 033303 (2002). [40] Sang Soo Yu, Tran Thi Lan Anh, Young Eon Ihm, Dojin Kim,Hyojin Kim, Soon Ku Hong, Sangjun Oh, Chang Soo Kim, Hwack, Joo Lee, Byung Chill Woo, Current Appl. Phys. 6, 545 (2006). [41] Y. D. Park, A. Wilson, A. T. Hanbicki, J. E. Mattson, T. Ambrose, G. Spanos, and B. T. Jonker , Appl. Phys. Lett. 78, 2739 (2001). [42] D. Bougeard, S. Ahlers, A. Trampert, N. Sircar, and G. Abstreiter, Phys. Rev. Lett., 97 237202 (2006). [43] T. Yokota, N. Fujimura,and T. Ito, Appl. Phys. Lett. 81, 4023 (2002). [44] Hwa-Mok Kim, Nam Mee Kim, Chang Soo Park, Shavkat U. Yuldashev, Tae Won Kang, and Kwan Soo Chung, Chem. Mater. 15, 3964 (2003). [45] F. M. Zhang, X. C. Liu, J. Gao, X. S. Wu, Y. W. Du, H. Zhu, J. Q. Xiao, and P. Chen, Appl. Phys. Lett. 85, 786 (2004). [46] X. C. Liu, Z. H. Lu, Z. L. Lu, L. Y. Lv, X. S. Wu, F. M. Zhang,and Y. W. Du,J. Appl. Phys. 100, 073903 (2006). [47] M. Bolduc, C. Awo-Affouda, A. tollenwerk, M. B. Hung, F. Ramos, G. Agnello and V. P. LaBella, Pysics. Review B 71, 033302 (2005). [48] Shengqiang Zhou, K. Potzger, Gufei Zhang, A. Mücklich, F. Eichhorn, N. Schell, R. Grötzschel, B. Schmidt, W. Skorupa, M. Helm, and J. Fassbender, Phys. Rev. B 75, 082503 (2007). [49] H. T. Lin, W. J. Huang, S. H. Wang, H. H. Lin, T. S. Chin, J Phys. C 20, 095004 (2008). [50] M. Bolduc, C. Awo-Affoud, F. Ramos and V. P. LaBella, J. Vac. Sci. Technol. A 24(4), 1648 (2006). [51] V. Ko, K. L. Teo, T. Liew, T. C. Chong, M. MacKenzie, I MacLaren, and J. N. Chapman, J. Appl. Phys. 104, 033912 (2008). [52] S. H. Chiu, H. S. Hsu, J. C. A. Huang, J. Appl. Phys. 103, 07D110 (2008). [53] G. M. Dalpian, Antonio J. R. da Silva, and A. Fazzio, Phys. Rev. B 68, 113310 (2003). [54] Jia-Hsien Yao, Hsiu-Hau Lin, and Tsung-Shune Chin, Appl. Phys. Lett. 92, 242501 (2008). [55] Jia-Hsien Yao, Shin-Chih Li, Ming-Der Lan, and Tsung-Shune Chin, Appl. Phys. Lett. 94, 072507 (2009). [56] Hiroshi Nakayama, Hitoshi Ohta, Erkin Kulatov, Physica B, 302–303, 419–424(2001). [57] Hwa Mok Kim, Nam Mee Kim, Chang Soo Park, Shavkat u. Yuldashev, Tae Won Kang, and Kwan Soo Chung, Chem. Mater. 15, 3964-3965 (2003). [58] Y.H. Kwon, T.W. Kang, H.Y. Cho, T.W. Kim, Solid state communications 136, 257 (2006). [59] P. R. Bandaru, J. Park, and J. S. Lee, Appl. Phys. Lett. 89, 112502 (2006). [60] Lifeng Liu et, Nuofu Chen, Yi Wang ,Zhigang Yin, Fei Yang, Chunlin Chai, Xing Zhang, J. Crystal Growth 291, 239-242 (2006). [61] Y.H. Kwon, T.W. Kang, H.Y. Cho, T.W. Kim, Solid State Commun. 136, 257-261(2005). [62] I. T. Yoon, C. J. Park, T. W. Kang, J. Magn. Magn. Mater. 311, 693-696 (2007). [63] H. W. Wu, C. J. Tsai, L. J. Chen, Appl. Phys. Lett. 90, 043121 (2007). [64] 汪建民,材料分析,中國材料科學學會,p152-p155. [65] http://microanalysis.mikroanalytik.de/microanalysis%20guide%20e.phtml. [66] http://www.ilp.physik.uni-essen.de/vonderLinde/research/UXD/XrayFocus.html [67]http://140.120.11.1/prophys/basicexp/expnote/hall/hall_920703.pdf. [68] http://www.sel-tek.co.uk/images/ [69] 林麗娟, X光繞射原理及其應用. 工業材料雜誌,86期 (2002). [70] http://rdweb.adm.nctu.edu.tw/page.php?serial=430. [71] http://www.montefiore.ulg.ac.be/services/vdb/equipment.php [72] 汪建民,材料分析,中國材料科學學會,p414-p421. [73] Transition Metal Impurities in Semiconductors,K. A. Kikoin, Viktor Nikolaevich Flërov, p88~p94. [74] Sang Soo Yu, Ki Hak Kim, Young Eon Ihm, Dojin Kim, Hyojin Kim, Soon Ku Hong,Chang Soo Kim, Hyun Ryu, Sangjun Oh, J. Magn. Magn. Mater. 304, e167 (2006). [75] K. C. Ku, S. J. Potashnik, R. F. Wang, S. H. Chun, P. Schiffer, N. Samarth M. J. Seong and A. Mascarenhas, Appl. Phys. Lett. 82, 2302 (2003). [76] S. J. Potashnik, K. C. Ku, S. H. Chun, J. J. Berry, N. Samarth, and P. Schiffer,Appl. Phys. Lett. 79, 1495 (2001). [77] Li Zeng, E. Helgren, M. Rahimi, F. Hellman, R. Islam, B. J. Wilkens, R. J. Culbertson and David J. Smith, Phys. Rev. B 77, 073306 (2008). [78] Xiao-Li Li, Zhu-Liang Wang, Xiu-Fang Qin, Hai-Shun Wu, and Xiao-Hong Xu, G. A. Gehring, J. Appl. Phys. 103, 023911 (2008). [79] J. C. A. Huang, H. S. Hsu, Y. M. Hu, C. H. Lee, Y. H. Huang, and M. Z. Lin,Appl. Phys. Lett. 85, 3815 (2004). [80] X. C. Liu, Y. B. Lin, J. F. Wang, Z. H. Lu, Z. L. Lu, J. P. Xu, L. Y. Lv,F. M. Zhang, and Y. W. Du, J. Appl. Phys. 102, 033902 (2007). [81] J. S. Custer, Michael O. Thompson, D. C. Jacobson, J. M. Poate, S. Roorda,W. C. Sinke, F. Spaepen, Appl. Phys. Lett. 64, 437 (1994). [82] Amorphous silicon, K. Tanaka, E. Maruyama, T. Shimada, H. Okamoto, p87~p89.
摘要: 本研究利用磁控濺鍍系統在室溫下製備氫化非晶矽錳薄膜,以低溫(100 ℃~300 ℃)在高真空環境中對詴片進行後退火。XRD和TEM結果顯示,短時間內的低溫退火對於微結構上並無影響,詴片仍為非晶態。電性表現上,錳含量在(3.7 at %~7.5 at%)的電阻率在退火後均有下降,退火溫度200 ℃以上,載子濃度有明顯的增加。磁性量測結果,低錳含量(3.7 at%)詴片退火後磁化量有提升,其中以300 ℃的退火溫度磁化量有最佳表現,詴片退火後鐵磁表現可到室溫300 K。高錳含量(7.5 at%)於200 ℃以下的退火則無法有效提升磁化量。依據電性及磁性量測的結果,磁化量提升應為退火效應有助於減少詴片內的缺陷與增加詴片的載子濃度,並活化部份錳原子,使二價的錳原子比例增加,而引發更多磁矩貢獻。 低溫霍爾量測結果可在100 K觀察到異常霍爾現象,推測磁性來源為載子誘發鐵磁性,退火對於詴片有助於缺陷的減少,且產生更多的自由載子,來傳遞磁訊號。另外,氫含量在低溫退火過程中能有效保留於詴片內部,不受加熱而逸失,仍可維持住氫化的目的。
Mn doped Hydrogenated amorphous silicon thin films were fabricated by magnetron sputtering at room temperature, and then post annealing with low temperature(100~300 ℃) in vacuum. No secondary phase or clusters formed by the identification of X-ray diffraction and transmission electron microscopy analysis indicated the amorphous nature of films after adequate annealing processes. For the electrical properties, hole concentration would be raised when the annealing temperature greater than 200 ℃, which leaded to resistivity decreasing. Magnetic measurement showed that all the films were ferromagnetic at 10 K, and the magnetization of the annealed a-Si96.3Mn3.7:H film was increased in comparison with the corresponding as-deposited one. Ferromagnetic at room temperature could also be observed. However, a- Si92.5Mn7.5:H annealing below 200 ℃ could not increase magnetization effectively. According to above investigation, the enhancement of magnetization was possibly duo to the fact that the defect density decreased in the films and increased hole concentration and some Mn atoms became magnetically active state during low temperature annealing, which was consistent with more Mn atoms contributed magnetic moment. Otherwise, anomalous hall effect were obtained at 100 K in annealed samples. We suggested that the mechanism of ferromagnetic may be arise from free carrier mediated. Finally, from Rutherford back scattering and elastic recoil detector analysis reveals that hydrogen could be sustain in the film by low temperature annealing which was agree with our aim to hydrogenation amorphous silicon at first.
URI: http://hdl.handle.net/11455/10593
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.