Please use this identifier to cite or link to this item:
標題: 鐵矽化物奈米結構與矽基材的界面性質及光學特性之研究
Interfacial and optical properties of iron silicide nanostructures on silicon substrates
作者: 吳黃源
Wu, Huang-Yuan
關鍵字: FeSi2
Reactive Deposition Epitaxy
出版社: 材料科學與工程學系所
引用: [1] M. Fanciulli, C. Rosenblad, G. Weyer, A. Svane, and N. E. Christensen, “Conversion electron Mossbauer spectroscopy study of epitaxial β-FeSi2 grown by Molecular beam epitaxy”, Phys. Rev. Lett. 75 (1995) 1642. [2] K. Takakura, N. Hiroi, T. Suemasu, S. F. Chichibu, and F. Hasegawa, “Investigation of direct and indirect band gaps of [100]-oriented nearly strain-free β-FeSi2 films grown by molecular-beam epitaxy”, Appl. Phys. Lett., 80 (2002) 556. [3] S. Y. Ji, J. F. Wang, J. W. Lim, and M. Isshiki, “Growth process of β-FeSi2 epitaxial film on Si(1 1 1) by molecular beam epitaxy”, Appl. Surf. Sci. 253 (2006) 444. [4] O. P. Karpenko, C. H. Olk, S. M. Yalisove, J. F. Mansfield, and G. L. Doll, “Structural investigation of Fe silicide fiil s grown by pulsed laser deposition”, J. Appl. Phys. 76 (1994) 2202. [5] T. Yoshitake, M. Yatabe, M. Itakura, N. Kuwano, Y. Tomokiyo, and K. Nagayama, “Semiconducting nanocrystalline iron disilicide thin films prepared pulsed-laser ablation”, Appl. Phys. Lett. 83 (2003) 3057. [6] S. A. Mulenko, Y. V. Kudryavtsev, and V. P. Mygashko, “Laser synthesis of semiconductor nanostructures with narrow band gap”, Appl. Surf. Sci. 253 (2007) 7973. [7] D. R. Peale, R. Haight, and J. Ott, “Heteroepitaxy of β-FeSi2 on unstrained and strained Si(100) surfaces”, Appl. Phys. Lett. 62 (1993) 1402. [8] L. Do´zsa, G. Molna´r, Z. J. Horva´th, A.L. To´th, J. Gyulai, V. Raineri, and F. Giannazzo, “Investigation of the morphology and electrical characteristics of FeSi2 quantum dots on silicon”, Appl. Surf. Sci. 234 (2004) 60. [9] J. H. Won, K. Sato, M. Ishimaru, and Y. Hirotsu, “Transmission electron microscopy study on FeSi2 nanoparticles synthesized by electron-beam evaporation”, J. Appl. Phys. 100 (2006) 014370. [10] C. M. Sun,H. K. Tsang, S. P. Wong, W. Y. Cheung, N. Ke, and S. K. Hark, “Rapid thermal annealing of ion beam synthesized β-FeSi2 nanoparticles in Si”, Appl. Phys. Lett. 92, (2008) 211902. [11] C. M. Sun, H. K. Tsang, S. P. Wong, N. Ke, and S. K. Hark, “Surface morphology evolution of amorphous Fe–Si layers upon thermal annealing”, J. Phys. D: Appl. Phys. 41 (2008) 085418. [12] D. N. Leong,a) M. A. Harry, K. J. Reeson, and K. P. Homewood “On the origin of the 1.5 μm luminescence in ion beam synthesized β-FeSi2”, Appl. Phys. Lett. 68 (1996) 1649. [13] B. Schuller, R. Carius, and S. Mantl, “Optical and structural properties of β-FeSi2 precipitate layers in silicon”, J. Appl. Phys. 94 (2003) 207. [14] C. Spinella, S. Coffa, C. Bongiorno, S. Pannitteri, and M. G. Grimaldi, “Origin and perspectives of the 1.54 μm luminescence from ion beam synthesized β-FeSi2 precipitates in Si”, Appl. Phys. Lett. 76 (2000) 173. [15] M. G. Grimaldi, C. Bongiorno, C. Spinella, C. Spinella, E. Grilli, L. Martinelli, M. Gemelli, D. B. Migas, and L. Miglio, “Luminescence from β-FeSi2 precipitates in Si. I. Morphology and epitaxial relationship”, Phys. Rev. B 66 (2002) 085319. [16] L. Martinelli, E. Grilli, D. B. Migas, L. Miglio, F. Marabelli , C. Soci, M. Geddo, M. G. Grimaldi, and C. Spinella, “Luminescence from β-FeSi2 precipitates in Si II. Origin and nature of the photoluminescence”, Phys. Rev. B 66 (2002) 085320. [17] N. Vouroutzis, T.T. Zorba, C.A. Dimitriadis, K.M. Paraskevopoulos, L. D´ozsa, and G. Moln´ar, “Growth of β-FeSi2 particles on silicon by reactive deposition epitaxy”, J. Alloys Comp. 448 (2008) 202. [18] T. Suemasu, Y. Iikura, K. Takakura, and F. Hasegawa, “ Optimum annealing condition for 1.5μm photoluminescence from β-FeSi2 balls grown by reactive deposition epitaxy and embedded in Si crystal ”,J. Lumi. 87 (2000) 528 [19] D.R. Gong, D.S. Li, Z.H. Yuan, M.H. Wang, and D.R. Yang, “Optical properties of single-phase β-FeSi2 films fabricated by electron beam evaporation”, Appl. Surf. Sei. 254 (2008) 4875. [20] T. Suemasu, Y. Negishi, K. Takakura, and F. Hasegawa, “Room Temperature 1.6μm Electroluminescence from a Si-Based Light Emitting Diode with β-FeSi2 Active Region”, Jpn. J. Appl. Phys. 39 (2000) L 1013. [21] S. Santucci, L. Lozzi, M. Passacantando, P. Picozzi, P. Petricola, G. Moccia, R. Alfonsetti, and R. Diamanti, “Studies on structural, electrical, compositional, and mechanical properties of WSix thin films produced by low-pressure chemical vapor deposition”, J. Vac. Sci. Technol. A 16 (1998) 1207. [22] J. Amano, P. Merchant, T.R. Cass, J.N. Miller, and T. Koch, “Dopant redistribution during titanium silicide formation”, J. Appl. Phys. 59 (1986) 2689. [23] K. Solt, H. Melchior, U. Kroth, P. Kuschnerus, V. Persch, H. Rabus,M. Richter, and G. Ulm, “PtSi–n –Si Schottky-barrier photodetectors with stable spectral responsivity in the 120–250 nm spectral range”, Appl. Phys. Lett. 69 (1996) 3662. [24] S. Papatzika, N. A. Hastas, C. T. Angelis, C. A. Dimitriadis, G. Kamarinos, and J. I. Lee, “Investigation of noise sources in platinum silicide Schottky barrier diodes”, Appl. Phys. Lett. 80 (2002) 1468. [25] P. Giordano, J.P. Gonchond, J.C. Oberlin, P. Normandon, R. Basset, and A. Chantre, “Leakage mechanism for tungsten/chromium metalized silicon p/n junctions”, Appl. Phys. Lett. 54 (1989) 2429. [26] V. Bellani, G. Guizzetti, F. Marabelli, A. Piaggi, A. Borghesi, F. Nava, V. N. Antonov, Vl. N. Antonov, O. Jepsen, O. K. Andersen, and V. V. Nemoshkalenko, “Theory and experiment on the optical properties of CrSi2”, Phys. Rev. B 46 (1992) 9380. [27] M. Rebien, W. Henrion, H. Angermann, and S. Teichert, “Ab initio study of the band structures of different phases of higher manganese silicides”, Appl. Phys. Lett. 81 (2002) 649. [28] L. Wang, L. Qin, Y. Zheng, W. Shen, X. Chen, X. Lin, C. Lin, and S. Zou, “Optical transition properties of β-FeSi2 film”, Appl. Phys. Lett. 65 (1994) 3105. [29] C. Fu, M. P. C. M. Krijn, and S. Doniach, “Electronic structure and optical properties of FeSi, a strongly correlated insulator”, Phys. Rev. B 49 (1994) 2219. [30] J. H. Ma and Y. T. Qian, “Reduction-silication route to nanocrystalline rare earth (RE=Nd, Y) disilicide and their properties”, Chinese J. Inorg. Chem. 20 (2004) 901. [31] G. Molnar , L. Dozsa, G. Peto, Z. Vertesy, A.A. Koos, Z.E. Horvath, and E. Zsoldos, “Thickness dependent aggregation of Fe–silicide islands on Si substrate”, Thin Solid Films 459 (2004) 48. [32] H. von Kanel, N. Onda, H. Sirringhaus, E. Muller-Gubler, S. Goncalves-Conto, and C. Schwarz, “Epitaxial phase transitions in the iron/silicon system”, Appl. Surf. Sci. 70/71 (1993) 559. [33] J. Chevrier, V. Le Thanh, S. Nitsche, and J. Derrien, “Epitaxial growth of β-FeSi2 on silicon (111): a real-time”,Appl. Surf. Sci. 56-58 (1992) 438. [34] H. T. Lu, L. J. Chen, Y. L. Chueh, and L. J. Chou, “Formation of light-emitting FeSi2 in Fe thin films on ion-implanted (111) Si”, J. Appl. Phys. 93 (2002) 1468. [35] M. E. Schlesinger, “Thermodynamics of solid transition-metal silicides”, Chem. Rev. 90 (1990) 607. [36] J. Desimoni, H. Bernas, M. Behar, X. W. Lin, J. Washburn, and Z. L. Weber, “ Ion beam synthesis of cubic FeSi2”, Appl. Phys. Lett. 62 (1993) 306. [37] L. J. Chen, “Silicide technology for integrated circuits”, The Institution of Electrical Engineers, London (2004). [38] H. C. Cheng, T. R. Yew, and L. J. Chen, “ Interfacial reactions of iron thin film on silicon”, J. Appl. Phys. 57 (1985) 5246. [39] 張俊彥, “積體電路製程及設備技術手冊”, 經濟部技術處,P275, 1997年7月. [40] K. P. Homewood, K. J. Reeson, R. M. Gwilliam, A. K. Kewell, M. A. Lourenço, G. Shao, Y. L. Chen, J. S. Sharpe, C. N. McKinty, and T. Butler, “Ion beam synthesized silicides: growth, characterization and devices”, Thin Solid Films, 381 (2001) 188. [41] T. Suemasu, Y. Iikura, T. Fujii, K. Takakura, N. Hiroi, and F. Hasegawa, “Improvement of 1.5 μm Photoluminescence from Reactive Deposition Epitaxy (RDE) Grown β-FeSi2 Balls in Si by High Temperature Annealing”, Jpn. J. Appl. Phys. 38 (1999) L 620. [42] V. Darakchieva, M. Baleva, M. Surtchev, and E. Goranova, “Structural and optical analysis of β-FeSi2 thin layers prepared by ion-beam synthesis and solid-state reaction”, Phys. Rev. B 62 (2000) 13057. [43] K. Lefki, P. Muret, N. Cherief, and R.C. Cinti, “Optical and electrical characterization of β-FeSi2 epitaxial thin films on silicon substrates”, J. Appl. Phys. 69 (1991) 352. [44] M. Rebien, W. Henrion, U. Muller, and S. Gramlich, “Exciton absorption in β-FeSi2 epitaxial films”, Appl. Phys. Lett. 74 (1999) 970. [45] E. Arushanov, E. Bucher, C. Kloc, O. Kulikova, L. Kulyuk, and A.Siminel, “Photoconductivity in n-type β-FeSi2 single crystals”, Phys. Rev. B 52 (1995) 20. [46] A.B. Filonov, D.B. Migas, V.L. Shaposhnikov, N.N. Dorozhkin, G.V. Petrov, V.E. Borisenko, W. Henrion, and H. Lange, “Electronic and related properties of crystalline semiconducting iron disilicide”, J. Appl. Phys. 79 (1996) 7708. [47] C. Giannini, S. Lagomarsino, F. Scarinci, and P. Castrucci, “Nature of the band gap of polycrystalline β-FeSi2 films”, Phys. Rev. B 45 (1992) 8822. [48] A.G. Birdwell, R. Glosser, D.N. Leong, and K.P. Homewood, “Raman investigation of ion beam synthesized β-FeSi2”, J.Appl. Phys. 89 (2001) 965. [49] N.E. Christensen, “Electronic structure of β-FeSi2”, Phys. Rev. B 42 (1990) 7148. [50] T. Suemasu, T. Fujii, K. Takakura, and F. Hasegawa, “Dependence of photoluminescence from β-FeSi2 and induced deep levels in Si on the size of β-FeSi2 balls embedded in Si crystals”, Thin Solid Films, 381 (2001) 209. [51] Y. Maeda,, Y. Terai, M. Itakura, and N. Kuwano,“Photoluminescence properties of ion beam synthesized β-FeSi2”, Thin Solid Films, 461 (2004) 160. [52] R. Ayachea, A. Bouabelloub, and E. Richter, “Optical characterization of β-FeSi2 layers formed by ion beam synthesis”, Materials Science in Semiconductor Processing, 7 (2004) 463. [53] Y. Terai , Y. Maeda , and Y. Fujiwara , “Nondestructive investigation of β-FeSi2/Si interface by photoluminescence measurements”, Thin Solid Films, 515 (2007) 8129. [54] V. E. Borisenko, Semiconducting silicides,Chap.4, Springer(2000). [55] Y. Tomm, L. Ivaneko, K. Irmscher, St. Brehme, W. Henrion, I. Sieber, and H. Lange”, Effects of doping on the electronic properties of semiconducting”, Mater Sci. Engng. B 37 (1996) 215.
摘要: 本研究利用反應式磊晶法在矽基材上生長奈米尺寸的鐵矽化物,並改變蒸鍍量、基材溫度、熱處理時間及不同類型矽基材上生成鐵矽化物奈米顆粒,探討不同製程條件生成之鐵矽化物奈米結構與矽基材的界面性質及其光學特性。研究結果顯示,2 nm Fe/n-Si(100)持溫10 min於基材溫度500℃時為Type B FeSi(CsCl) or Type B γ-FeSi2以及少量β-FeSi2共存;基材溫度600℃時為β-FeSi2、Type A和Type B γ-FeSi2及α-FeSi2共存,且β-FeSi2會由γ-FeSi2相轉變而來;基材溫度700℃時為高溫穩定相α-FeSi2;α-FeSi2及β-FeSi2傾向於突出基材表面, FeSi(CsCl)及Type B γ-FeSi2會鑲埋於基材中。另外,隨著持溫時間的增加奈米顆粒的型態改變、尺寸縮小,鐵矽化物的相轉變也持續發生。 以PL進行鐵矽化物之光性量測,並結合鐵矽化物奈米顆粒結構、基材種類與PL發光性質分析,推測波峰位於1616 nm及1656 nm為不純物存在於γ-FeSi2與矽基材界面所致。而位於1300 nm-1600 nm的寬廣波峰為β-FeSi2及磷的參雜所引起的,且隨持溫的時間增加,奈米顆粒的形貌改變及尺寸減小,引發尺寸效應使PL強度增加。
Iron silicide nanoparticles were grown on Si substrate by reactive deposition epitaxy at various temperatures. Fe thin films, 2 and 5 nm in thickness, were deposited on n-type and p-type Si substrates at 500-700 °C and were further annealed in situ at the same temperature for 10 min to 4 hr. The reactions of Fe and Si substrates, the structure properties of the silicide nanoparticle/Si substrate interfaces and optical properties of iron silicide nanoparticles were studied by SEM, AFM, TEM and PL analyses. The results show as follows. Type-B FeSi(CsCl) or γ-FeSi2 nanoparticles and a few of β-FeSi2 nanoparticles were formed at 500 ºC. Type-A and type-B γ-FeSi2, α-FeSi2 and β-FeSi2 nanoparticles coexisted in the samples that were deposited at 600 ºC. β-FeSi2 was transformation from γ-FeSi2. α-FeSi2 phase was predominant in the sample that was deposited at 700 ºC. Among these iron silicide nanoparticles, α-FeSi2 and β-FeSi2 nanoparticles tended to protrude out of the Si substrate and FeSi(CsCl) and γ-FeSi2 nanoparticles preferred to embed in the Si substrate. From the results of PL analysis of the iron silicide precipitates formed in various processes on n-type and p-type Si substrates type, PL peaks at 1616 nm and 1656 nm are the emission due to impurities at interface at γ-FeSi2 nanoparticles/Si substrates. The broad peak at the range of 1300 nm to 1600 nm can be attributed to the intrinsic emission of semiconducting β-FeSi2 with P dopant. In addition, the shape and size of the nanoparticles altered and reduced, respectively, with the increase of the annealing time, which caused that the intensity of PL peaks increased.
Appears in Collections:材料科學與工程學系



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.