Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10608
標題: 以射頻磁控濺鍍法製備矽鍺熱電薄膜
Silicon-Germanium thermoelectric thin films prepared by RF magnetron sputtering
作者: 李哲瀚
Li, Che-Han
關鍵字: thermoelectric
熱電
SiGe
thin films
矽鍺
薄膜
出版社: 材料科學與工程學系所
引用: 參考文獻 1. 吳三連,”矽鍺材料之發展現況”,真空科技,十六卷四期,P36~P42。 2. 吳財福、陳裕愷、張健軒著「太陽光電能供電與照明系統綜論第二版」,全華科技圖書股份有限公司,P2-6~P2-9。 3. Yuan-Ming Chang, Ching-Liang Dai, Tsung-Chieh Cheng, Che-Wei Hsu, ”Effect of annealing temperature for Si0.8Ge0.2 epitaxial thin films,” Applied Surface Science,254(2008)3105-3109. 4. 熱電材料應用簡介, ”http://tns.ndhu.edu.tw/~ykkuo/thermoelectric.pdf.” 5. M. Strasser, R. Aigner, M. Franosch and G. Wachutka,” Miniaturized thermoelectric generators based on poly-Si and poly-SiGe surface micromachining,” Sensors and Actuators A 97-98(2002)535-542 6. J. A. Tsai, A. J. Tang, A. T. Noguchi and R. Teif : J. Electrochem.Soc. 142(1995)3220. 7. K. Sawano, Y. Hirose, S. Koh, K. Nakagawa, T. Hattori, Y. Shiraki,” Relaxation enhancement of SiGe thin layers by ion implantation into Si substrates,” Journal of Crystal Growth 251 (2003) 685–688. 8. E. V. Jelenkovic, K. Y. Tong, W. Y. Cheung, I. H. Wilson, S. P. Wong, M. C. Poon,” Low temperature doping of poly-SiGe films with boron by co-sputtering,” Thin Solid Films 368 (2000) 55-60. 9. L. K. Teh, W. K. Choi, L. K. Bera W. K. Chim,” Structural characterisation of polycrystalline SiGe thin film,”Solid-State Electronics 45(2001)1963-1966. 10. A. Matsuda,” Thin-Film Silicon —Growth Process and Solar Cell Application—,” The Japan Society of Applied Physics.43 (2004)7907-20. 11. F. Qiu, W. Shin, M. Matsumiya, N. Izu and N. Murayama,” Hydrogen Sensor Based on RF-Sputtered Thermoelectric SiGe Film,” The Japan Society of Applied Physics.42(2003)1563-1567. 12. K. Tajima, F. Qiu, W. Shin, N. Izu, I. Matsubara, N. Murayama,” Micromechanical fabrication of low-power thermoelectric hydrogen sensor,” Sensors and Actuators B 108 (2005) 973–978. 13. D. M. Rowe,”CRC Handbook of Thermoelectrics,”CRC Press Boca Raton London New York Washington,D.C. 14. Safa Kasap,”Thermoelectric effects in metals : thermocouples,”Department of Electrical Engineering University of Saskatchewan Canada. 15. 朱旭山,”熱電材料與元件之原理與應用”,電子與材料雜誌,第22期。 16. Thomson. W,”On a mechanical theory of thermoelectric currents,”Proceedings of the Royal Society of Edinburgh,91,1851. 17. Altenkirch. E.”Uber den Nutzeffect der Thermosaule,”Physikalische Zeitschrift 10,560,1909. 18. Altenkirch. E.”Elektrothermische Kalteerzeugung und Reversible Elektrische Heizung,”Physikalische Zeitschrift 12,920,1911. 19. L. H. Van Vlack, 「材料科學與工程」,第六版,李志偉、劉森源、張庭瑞譯,文京圖書有限公司,台北,1996年2月,P498。 20. T. Massalski, CD ROM: Binary Alloy Phase Diagrams, ASM International,OH,USA,1996. 21. Guo-Ping Ru, Xin-Ping Qu, Qiang Gu, Wen-Jie Qi, Bing-Zong Li,” Boron and phosphorous diffusion in ion-beam-sputtering deposited SiGe films,”Materials Letters 57(2002)921-924. 22. T. J. King and K. C. Saraswat,”A low-temperature(≦550 °C) silicon-germanium MOS thin-film transistor technology for large-area electronics,”IEDM Tech.Dig(1991)567-570. 23. J. B. Rem, M. C. V.de Leuw, J. Hollerman and J. F. Verweij,”Furnace and rapid thermal crystallization of amorphous GexSi1-x and Si for thin film transistors,”Thin Solid Films,296(1997)152-156. 24. E. V. Jelenkovic, K. Y. Tong, and Z. Sun, C. L. Mak, W. Y. Cheung,” Properties of crystallized Si1-xGex thin films deposited by sputtering,”American Vacuum Society(1997)2836-3841. 25. K. Sasaki, Y. Nabetani, H. Miyashita, T. Hata,”Heteroepitaxial growth of SiGe films and heavy B doping by ion-beam sputtering,”Thin Solid Films 369(2000)171-174. 26. Glenn G. Jernigan, Phillip E. Thompson,” The effect of Sb surfactant assisted growth on SiGe surface morphology,” Thin Solid Films 472(2005)16-19. 27. 王光伟、茹国平、张建民、曹继华、李炳宗,”濺射SiGe薄膜及其等時等溫退火效應”,半導體學報第27卷第5期,P846~P851。 28. D. Dimova-Malinovska, O. Angelov, M. Sendova-Vassileva, M. Kamenova, J.-C. Pivin,” Polycrystalline silicon thin films on glass substrate,”Thin Solid Films 451-452(2004)303-307. 29. C. Eisele, M. Berger, M. Nerding, H. P. Strunk, C. E. Nebel, M. Stutzmann,” Laser-crystallized microcrystalline SiGe alloys for thin film solar cells,”Thin Solid Films 427(2003)176-180. 30. Alfred Grill,”Cold Plasma in Materials Fabrication,”IEEE PRESS,New York,(1993)24-26. 31. 柯賢文,「表面與薄膜處理技術」,全華圖書股份有限公司,P5-4~P5-11,P8-8~P8-13。 32. 陳建人等著,「真空技術與應用」,行政院國家科學委員會精密儀器發展中心,P379~P389。 33. 羅吉宗,「薄膜科技與應用」,全華圖書股份有限公司,P2-1~P2-39。 34. 何主亮,「2004薄膜技術講義」,逢甲大學材料科學系,P73~P74。 35. Michael Quirk, Julian Serda著,羅文雄,蔡榮輝,鄭岫盈譯,「半導體製造技術」,滄海書局,台灣培生教育出版股份有限公司,P312。 36. M.Ohring,”Materials science of thin films: deposition and structured,2nd ed.,”Academic Press,San Diego,(2002)497-507. 37. J. A. Thornton,”High rate thick film growth,”Ann.Rev.Mater. Sci.,7(1977)239-260 38. Lundstrom I.,” Approaches and mechanisms to solid state based sensing,”Sens.Actuators.B-Chem(1996). 39. C.C.Liu, P.J.Hesketh, G.W.Hunter ,”Chemical microsensors,”Interface,13(2004). 40. W. Shin, M. Matsumiya, N. Izu, N. Murayama,” Hydrogen-selective thermoelectric gas sensor,” Sensors and Actuators B 93 (2003) 304–308. 41. W. Shin, M. Matsumiya, F. Qiu, N. Izu, N. Murayama,” Thermoelectric gas sensor for detection of high hydrogen concentration,” Sensors and Actuators B 97 (2004) 344–347. 42. K. Tajima, F. Qiu, W. Shin, N. Sawaguchi, N. Izu, I. Matsubara and N. Murayama,” Thermoelectric Properties of RF-Sputtered SiGe Thin Film for Hydrogen Gas Sensor,” Japanese Journal of Applied Physics, Vol. 43, No. 9A, 2004, pp. 5978–5983. 43. F. Qiu, W. Shin, M. Matsumiya, N. Izu, I. Matsubara, N. Murayama,”Miniaturization of thermoelectric hydrogen sensor prepared on glass substrate with low-temperature crystallized SiGe film,” Sensors and Actuators B 103(2004) 252–259. 44. G Beensh-Marchwicka, S Osadnik, E Procibw and W Mielcarek,” Structure and morphology of Ge(Au) sputtered films with useful Seebeck effect,”Vacuum 50(1998)207. 45. K. Tajima, W. Shin, N. Murayama, T. Itoh, N. Izu and I. Matsubara,” Preparation of Phosphorus-Doped Si0.8Ge0.2 Thermoelectric Thin Film Using RF Sputtering with Induction Coil,”Journal of the Ceramic Society of Japan 113 8(2005)558-561. 46. F. Qiu, M. Matsumiya, W. Shin, N. Izu, N. Murayama,” Investigation of thermoelectric hydrogen sensor based on SiGe film,” Sensors and Actuators B 94(2003) 152–160. 47. I. Nakamura, T. Ajiki, and M. Isomura,” Low Temperature Fabrication of Microcrystalline Silicon Germanium Films by RF Reactive Magnetron Sputtering,”Materials Research Society, Vol.910(2006). 48. I. Nakamura, T. Ajiki, H. Abe, D. Hoshi, M. Isomura,” Formation of polycrystalline SiGe thin films by the RF magnetron sputtering method with Ar–H2 mixture gases,” Vacuum 80 (2006) 712–715. 49. W. K. Choi, L. K. Teh, L. K. Bera, and W. K. Chim, A.T.S Wee and Y. X. Jie,” Microstructural characterization of rf sputtered polycrystalline silicon germanium films,” JOURNAL OF APPLIED PHYSICS,Vol91 1(2002)444-450. 50. H. Makihara, A. Tabata, Y. Suzuoki, T. Mizutani,” Effect of the hydrogen partial pressure ratio on the properties of μc-Si:H films prepared by rf magnetron sputtering,” Vacuum 59 (2000)785-791. 51. K. Fukaya, A. Tabata, T. Mizutani,” Dependence on gas pressure of μc-Si:H prepared by RF magnetron sputtering,” Vacuum 74 (2004) 561–565. 52. J. Kondo, A. Tabata, T. Kawamura, T. Mizutani,” Dependence on substrate temperature of the film structure of μc-Si:H prepared by RF magnetron sputtering,” Vacuum 66 (2002) 409–413. 53. K. Nakajima, N. Usami, K. Fujiwara, Y. Murakami, T. Ujihara, G. Sazaki, T. Shishido,” Melt growth of multicrystalline SiGe with large compositional distribution for new solar cell applications,” Solar Energy Materials & Solar Cells 72 (2002) 93–100. 54. K. Nakajima, N. Usami, K. Fujiwara, Y. Murakami, T. Ujihara, G. Sazaki, T. Shishido,” Growth and properties of SiGe multicrystals with microscopic compositional distribution for high-efficiency solar cells,” Solar Energy Materials & Solar Cells 73 (2002) 305–320. 55. N. Usami, W. Pan, K. Fujiwara, T. Ujihara, G. Sazaki and K. Nakajima,” Relationship between Device Performance and Grain Boundary Structural Configuration in a Solar Cell Based on Multicrystalline SiGe,” Japanese Journal of Applied Physics Vol. 43 No. 2B (2004)L 250–L 252.
摘要: 本研究是使用射頻磁控濺鍍法於矽晶片上製備N型SiGe薄膜,靶材所採用的方式是在摻雜磷之矽靶上貼附鍺靶來濺鍍。利用改變矽鍺靶材面積比例進行薄膜成份的控制,並藉由改變基板溫度以及退火溫度之製程參數,利用場發射掃描式電子顯微鏡、化學分析電子能譜儀、二次離子質譜儀、X光繞射儀、霍爾效應量測儀以及自組裝之熱電量測系統作為分析儀器,分別量測薄膜表面形貌、橫截面、成分、結晶性質、電性以及Seebeck係數等特性。藉由此製程參數的改變,期望製備出結晶之矽鍺薄膜,並且能得到較佳之熱電性質。 由實驗之結果顯示,基板溫度由室溫增加至500°C,鍍膜速率隨之增加,但整體仍為非晶態。而薄膜之載子濃度偏低,造成電阻率不佳,但遷移率最高可達2204 cm2/V•s。此外由於缺陷能階之影響,Seebeck係數為正值,最大出現在基板溫度為300°C時之2.88 V/K,而功率因子最大值也是在300°C時之3.68×10-4 W/K2•m。另外退火溫度由600增加至800°C時,薄膜仍為非晶態,直至900°C才出現結晶性。薄膜內載子濃度同樣偏低,由於900°C時產生結晶,造成遷移率上升以及電阻率下降。但Seebeck係數最大出現在退火溫度為600°C時之0.79 V/K,而功率因子最大值也是在600°C時之3.17×10-5 W/K2•m。
N-type silicon-germanium thin films were prepared on silicon substrates by RF magnetron sputtering process. The sputtering target was a phosphorous-doped silicon target attached with germanium pieces. The composition of the SiGe thin films were controlled by changing the ratio of the area of silicon and germanium. By changing the parameters of substrate temperature and annealing temperature, we examined the microstructure, composition, crystallinity, electrical and thermoelectric properties by field emission scanning electron microscope, X-ray photoelectric spectroscopy, secondary ion mass spectrometer, X-ray diffraction, Hall effect and Seebeck coefficient measurement. By changing the parameters, we expected to prepare crystalline SiGe thin films and to have better thermoelectric properties. The results showed that the SiGe thin films were amorphous and the deposition rate increased with increasing substrate temperature from room temperature to 500C. The carrier concentrations were very low and resulted in poor resistivity, but the carrier mobility was up to 2204 cm2/V•s. Because of the effect of defect level, the Seebeck coefficients were positive. The maximum Seebeck coefficient is 2.88 V/K and the power factor meanwhiles is 3.6810-4 W/K2•m when the substrate temperature was 300C. On the other hand, SiGe thin film was crystallized when annealed at 900C. Similarly, the carrier concentrations were very low. But the mobility increased and the resistivity decreased when the films were crystallized. The maximum Seebeck coefficient of 0.79 V/K and power factor of 3.1710-5 W/K2•m when the annealing temperature was 600 C.
URI: http://hdl.handle.net/11455/10608
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館

Show full item record
 
TAIR Related Article
 
Citations:


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.