Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10628
標題: 銀/鐵鉑薄膜之磁性質及微結構研究
Magnetic Properties and Microstructure of (001) Oriented Ag/FePt Films
作者: 林國儐
Lin, Guo-Bin
關鍵字: FePt
鐵鉑
anisotropy
RTA
垂直異向性
快速熱退火
出版社: 材料科學與工程學系所
引用: [1] Toshio Suzuki, Takanori Kiya, Naoki Honda and Kazuhiro Ouchi, IEEE Trans. Magn. 36, 5 (2000). [2] Michael Alex, Alexander Tselikov, Terry McDaniel, Neil Deeman, Thierry Valet, and David Chen, IEEE Trans. Magn. 37, 4 (2001). [3] B D Terris and T Thomson, J. Phys. D: Appl. Phys. 38, R199 (2005). [4] http://www.hitachigst.com/hdd/research/storage/pm/index.html, Hitachi Global Storage Technologies. [5] 郭博成,”磁性技術手冊”,中華民國磁性技術協會,p.169-174,2002年。 [6] Dieter Weller, Andreas Moser, Liesl Folks, Margaret E. Best, Wen Lee, Mike F. Toney, M. Schwickert,Jan-Ulrich Thiele, and Mary F. Doerner, IEEE Trans. Magn. 36, 1 (2000). [7] 楊志信, “垂直磁紀錄原理”, 台灣資訊儲存技術協會會刊,2005年。 [8] 陳士堃,”磁性技術手冊”,中華民國磁性技術協會,p.23-24,2002年。 [9] Dieter Weller, Andreas Moser, Liesl Folks, Margaret E. Eest, Wen Lee, Mike F. Toney, M. Schwickert, Jan-Ulrich Thiele and Mary F. Doerner, IEEE Trans. Magn. 36, 10 (2000). [10] http://www.hgst.com/hdd/research/images/pr%20images/perpendicular4.gif, Hitachi Global Storage Technologies. [11] Thaddeus B. Massalski, “Binary Alloy Phase Diagram”, vol 1, American Society For Metals, second printing (1987). [12] H. Okamoto, “Binary Alloy Phase Diagrams”, vol. 2, ASM International, second edition (1992). [13] Hari Singh Nalwa, “Magnetic Nanostructuress”, p.96. [14] 許樹恩,吳泰伯,”X光繞射原理與材料結構分析”,中國材料科學學會,第十三章,1996年。 [15] Y. K. Takahashi, K. Hono, Scripta Materialia, 53, 403 (2005). [16] Yu-Nu Hsu, Sangki Jeong, David N. Lambeth, and David E. Laughlin, IEEE Trans. Magn. 36, 5 (2000). [17] Yu-Nu Hsu, Sangki Jeong, David E. Laughlin, David N. Lambeth, J. Magn. Magn. Mater. 260, 282 (2003). [18] Z. L. Zhao, J. Ding, K. Inaba, J. S. Chen, J. P. Wang, Appl. Phys. Lett. 83, 11 (2003). [19] Z. L. Zhao, K. Inaba, Y. Ito, J. S. Chen, B. H. Liu, J. Ding , J. P. Wang, J. Appl. Phys. 95, 11 (2004). [20] Z. L. Zhao, J. Ding, J. B. Yi, J. S. Chen, J. H. Zeng, J. P. Wang, J. Appl. Phys. 97, 10H502 (2005). [21] Y. Z. Zhou, J. S. Chen, G. M. Chow, J. P. Wang, J. Appl. Phys. 93, 10 (2003). [22] Y. Z. Zhou, J. S. Chen, G. M. Chow, J. P. Wang, J. Appl. Phys. 95, 11 (2004). [23] C. Y. You, Y. K. Takahashi, and K. Hono, J. Appl. Phys. 100, 056105 (2006). [24] Z. L. Zhao, J. S. Chen, J. Ding, J. B. Yi, B. H. Liu, J. P. Wang, Appl. Phys. Lett. 88, 052503 (2006). [25] J. K. Mei, D. H. Wei, and Y. D. Yao, Phys. Stat. Sol. (a) 204, 12, 4153 (2007). [26] D. H. Wei, F. T. Yuan, H. W. Chang, K. L. You, Y. Liou, Y. D. Yao, J. K. Wu, J. Appl. Phys. 103, 07E116 (2008). [27] T. O. Seki, Y. K. Takahashi, K. Hono, J. Appl. Phys. 103, 023910 (2008). [28] T Yang, K Kang, G H Yu and T Suzuki, J. Phys. D: Appl. Phys. 35, 2897 (2002). [29] C. L. Platt, K. W. Wierman, E. B. Svedberg, R. van de Veerdonk, J. K. Howard, A. G. Roy and D. E. Laughlin, J. Appl. Phys. 92, 10 (2002). [30] S.-C. Chen , P.C. Kuo, A.C. Sun, C.T. Lie, W.C. Hsu, Materials Science and Engineering B88, 91 (2002). [31] K. Kang, Z. G. Zhang, C. Papusoi, and T. Suzuki, Appl. Phys. Lett. 82, 19 (2003). [32] Y. Shao, M. L. Yan, and D. J. Sellmyer, J. Appl. Phys. 93, 10 (2003). [33] Xiao-Hong Xu, Hai-Shun Wu, Fang Wang, Xiao-Li Li, Thin Solid Films 472, 222 (2005). [34] S. C. Chen, P. C. Kuo, A. C. Sun, C. Y. Chou, Y. H. Fang, and S. Y. Kuo, IEEE Trans. Magn. 41, 10 (2005). [35] S. C. Chen, P. C. Kuo, C. Y. Chou, and A. C. Sun, J. Appl. Phys. 97, 10N107 (2005). [36] Bao-He Li, Chun Feng, Tao Yang, Pol Hwang, Jiao Teng, Guang-Hua Yu, and Feng-Wu Zhu, J. Appl. Phys. 99, 016102 (2006). [37] Hao Wanga, F.J. Yang, H.B. Wang, X. Cao, S.X. Xue, J.A. Wang, Y. Gao, Z.B. Huang, C.P. Yang, M.F. Chiah, W.Y. Cheung, S.P. Wong, Q. Li, Z.Y. Li, J. Magn. Magn. Mater. 303, e270 (2006). [38] S.C. Chen, P.C. Kuo, A.C. Sun, C.Y. Chou, Y.H. Fang, T.H. Wu, J. Magn. Magn. Mater. 304, e47 (2006). [39] 江政忠,”真空技術與應用”,國家實驗研究室儀器科技研究中心,第十三章,2001年。 [40] 田民波,顏怡文,”薄膜技術與薄膜材料”,五南圖書,第十一章,2007年。 [41] 莊達人,”VLSI製造技術”,高立,P.146,2008年。 [42] 林和龍,金重勳,”磁性技術手冊”,中華民國磁性技術協會,p.509,2002年。 [43] http://www.el.utwente.nl/tdm/istg/research/vsm/vsm.htm. [44] 吳南均,汪建民,”材料分析”,中國材料科學學會,p.76,1998年。 [45] 潘扶民,汪建民,”材料分析”,中國材料科學學會,第十三章,1998年。 [46] Y.M. Sung, M.K. Lee, K.E. Kim, T.G. Kim, Chem. Phys. Lett. 443, 319 (2007). [47] M.F. Toney, W.Y. Lee, J.A.Hedstrom, Andrew Kellock, J. Appl. Phys. 93, 12 (2003). [48] X.H. Li, B.T. Liu, W. Li, H.Y. Sun, D.Q.Wu, X.Y. Zhang, J. Appl. Phys. 101, 093911 (2007). [49] Hari Singh Nalwa, “Magnetic Nanostructures”, California, USA. [50] E. P. Wohlfarth, J. Appl. Phys. 29, 595 (1958). [51] Jae-Song Kim, Yang-Mo Koo, Thin Solid Films 516, 1147 (2008). [52] Jae-Song Kim, Yang-Mo Koo, and Byeong-Joo Lee, Seong-Rae Lee, J. Appl. Phys. 99, 053906 (2006).
摘要: 本實驗為了於玻璃基板上成長垂直磁異向性之FePt薄膜,故研究以Ag/FePt之薄膜結構為基礎,藉由製程方式的改變,探討其對FePt薄膜磁性質與顯微結構的影響。我們以磁控濺鍍的方式製備FePt與Ag/FePt薄膜於玻璃基板上,試片經由熱處理後以VSM,XRD,TEM及XPS進行性質分析。 當Ag/FePt雙層薄膜高溫濺鍍於500 ℃之玻璃基板並後退火時,發現當FePt層厚度由3 nm增加至15 nm時,其矯頑磁力(Hc∥)由6.1 kOe增加至11.5 kOe,可能的原因為FePt薄膜的序化度隨FePt層厚度增加而上升。而固定FePt層厚度為10 nm時,當退火溫度從400 ℃增加至600 ℃時,其矯頑磁力(Hc∥)從7.6 kOe增加至13 kOe,而於此製程中,薄膜之磁性質皆屬於磁等向性。 當改以快速熱退火製程(RTA)進行真空後退火時,同樣也能發現其矯頑磁力 (Hc⊥)隨FePt層厚度增加而上升,並發現FePt層於10 nm以下時,薄膜能擁有不錯的垂直磁異向性。此外,FePt薄膜之矯頑磁力(Hc⊥)隨後退火溫度上升,從1.7 kOe增加至11.7 kOe,並能發現其由低溫之水平磁異向性轉變為高溫之垂直磁異向性。此外,我們發現拉長退火時間也能促使薄膜擁有垂直磁異向性。 當改變後退火氣氛使其於氬氣氣氛下後退火時,FePt薄膜之矯頑磁力(Hc⊥)隨後退火溫度上升從6 kOe增加至19 kOe,與真空後退火相較之下,發現於氬氣氣氛下後退火能使薄膜有較大的矯頑磁力(Hc⊥)並擁有較佳之垂直磁異向性,我們推論可能的原因為氬氣的流動提供了另一個熱傳導途徑並保護薄膜於高溫中不容易氧化,而使FePt有較佳的磁性質。 最後,我們探討超薄Ag頂層對FePt薄膜磁性質與微結構的影響,發現沒有Ag頂層的加入,FePt薄膜呈現等向性之磁性質。造成此結果的原因可能為Ag頂層的導入能有效的增進FePt的序化速度,使薄膜內大部份之殘留平面應變與序化所產生之非等向性應變相互作用,造成薄膜於玻璃基板中有垂直磁異向性之磁性質。
The effect of annealing processes on magnetic properties and microstructure were investigated for fabricated perpendicular magnetic anisotropy FePt thin films on glass substrates. Ag/FePt and FePt films were deposited on glass substrates by DC magnetron sputtering with different annealing processes, and the characteristics of sample were analyzed by VSM, XRD, TEM and XPS. In the case of Ag/FePt bilayer films deposited on arises substrate temperature to 500 ℃ and post-annealing for 30 min, the in-plane coercivity(Hc∥) were increases from 3.9 kOe to 9.4 kOe by alter FePt thickness from 3 nm to 15 nm. The reason perhaps is degree of ordering increases with increasing FePt thickness. When annealing temperature increases from 400 ℃ to 600 ℃ on FePt thickness fixed 10 nm, the in-plane coercivity were changed from 7.6 kOe to 13 kOe. But all of sample in this annealing process were magnetic isotropy. The films with perpendicular magnetic anisotropy when FePt thickness below 10 nm by post-annealing using rapid thermal processing (RTA). And out-of-plane coercivity (Hc⊥) increases with increasing FePt thickness and annealing temperature. We also found that perpendicular magnetic anisotropy were enhance by enlarge annealing time. The sample post-annealing under argon atmosphere were enhance both the coercivity and perpendicular magnetic anisotropy. The out-of-plane coercivity(Hc⊥) increases from 6 kOe to 19 kOe by increasing annealing temperature. The possible reason to have provided another heat conduction way for the argon flowing and to protect the films not to be easy in the high temperature to oxidize. So FePt films had better magnetic properties Finally, we discuss the ultra thin Ag top layer to the FePt thin films on magnetic properties and microstructure influence. The films with magnetic isotropy on FePt single layer films. The addition of Ag top layer enhance ordering transformation and recrystallization kinetics can affect the transformation effect and promote the (001) texture evolution.
URI: http://hdl.handle.net/11455/10628
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.