Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10638
標題: n型及p型碳薄膜之製造與特性研究
Fabrication and Characteristics of n-type and p-type Carbon Thin Films
作者: 朱容賢
Chu, Rong-Shian
關鍵字: 射頻電漿輔助化學氣相沉積法
carbon
射頻濺鍍法

n型碳
p型碳
薄膜
射頻功率
氮氣/甲烷比
非晶質含氮碳
非晶質含硼碳
光伏特
太陽電池
thin film
n-type carbon
p-type carbon
radio frequency plasma enhanced chemical vapor deposition
rf-sputtering
rf-powers
N2/CH4
nitrogenated amorphous carbon
boron-doped amorphous carbon
photovoltaic
solar cell
出版社: 材料科學與工程學系所
引用: [1] M. Umeno, and S. Adhikary, Diam. Relat. Mater. 14 (2005) 1973. [2] N.I. Klyui, V.G. Litovchenko, A.G. Rozhin, V.N. Dikusha, M. Kittler, and W. Seifert, Sol. Energy Mater. Sol. Cells 72 (2002) 597. [3] G.L. Che, B.B. Lakshmi, E.R. Fisher, and C.R. Martin, Nature 393 (1998) 346. [4] D.A. Stewart, and F. Lonard, Nano Lett. 5 (2005) 219. [5] H.W. Kroto, J.R. Heath, S.C. O'Brien, R.F. Curl, and R.E. Smalley, Nature 318 (1985) 162. [6] R.H. Baughman, A.A. Zakhidov, and W.A. deHeer, Science 297 (2002) 787. [7] J. Robertson, Mater. Sci. Eng. R 37 (2002) 129. [8] Y. Kimura, T. Sato, and C. Kaito, Carbon 42 (2004) 33. [9] J.P. Tu, L.P. Zhu, K. Hou, and S.Y. Guo, Carbon 41 (2003) 1257. [10] K. M. Krishna, T. Soga, K. Mukhopadhyay, M. Sharon, and M. Umeno, Sol. Energy Mater. Sol. Cells 48 (1997) 25. [11] H. Zhu, J. Wei, K. Wang, and D. Wu, Sol. Energy Mater. Sol. Cells 93 (2009) 1461. [12] http://hep.uchicago.edu/~satomis/research/images/silicon.png [13] http://www.mbi-berlin.de/images/science/Graphite_.jpg [14] http://en.wikipedia.org/wiki/File:C60a.png [15] http://cobweb.ecn.purdue.edu/~mdasilva/chirality.jpg [16] http://en.wikipedia.org/wiki/File:Amorphous_Carbon.png [17] W. Jacob, and W. Möller, Appl. Phys. Lett. 63 (1993) 1771. [18] C.W. Chen, and J. Robertson, J. Non-Cryst. Solids 227&230 (1998) 602. [19] J. Robertson, Philos. Mag. B 76 (1997) 335. [20] J. Robertson, and E.P. O'Reilly, Phys. Rev. B 35 (1987) 2946. [21] J. Robertson, Diam. Relat. Mater. 4 (1995) 297. [22] Rusli, J. Robertson, and G.A.J. Amaratunga, J. Appl. Phys. 80 (1996) 2998. [23] C. De Martino, F. Demichelis, and A. Tagliaferro, Diam. Relat. Mater. 4 (1995) 1210. [24] http://www.eng.unsw.edu.au/news/2008/1031.htm Magic solar mile-stone reached. Oct.31,2008. [25] D.M. Bagnall, and M. Boreland, Energy Policy 36 (2008) 4390. [26] T. Markvart, Solar electricity, John Wiley & Sons, New York, 2000. [27] J. Yang, A. Banerjee, and S. Guha, Sol. Energy Mater. Sol. Cells 78 (2003) 597. [28] A. Ilie, O. Harel, N.M.J. Conway, T. Yagi, J. Robertson, and W.I. Milne, J. Appl. Phys. 87 (2000) 789. [29] V.S. Veerasamy, G.A.J. Amaratunga, C.A. Davis, A.E. Timbs, W.I. Milne, and D.R. Mackenzie, J. Phys.: Condens. Matter 5 (1993) L169. [30] B. Gupta, P.K. Shishodia, A. Kapoor, R.M. Mehra, T. Soga, T. Jimbo, and M. Umeno, Sol. Energy Mater. Sol. Cells 73 (2002) 261. [31] S.R.P. Silva, and G.A.J. Amaratunga, Thin Solid Films 270 (1995) 194. [32] J.C. Han, M.L. Tan, J.Q. Zhu, S.H. Meng, B.S. Wang, S.J. Mu, and D.W. Cao, Appl. Phys. Lett. 90 (2007) 083508. [33] W.S. Choi, K. Kim, J. Yi, and B. Hong, Mater. Lett. 62 (2008) 577. [34] H. Kiyoda, K. Okano, T. Iwasaki, H. Izumiya, Y. Akiba, T. Kutosu, and M. Iida, Jpn. J. Appl. Phys. 30 (1991) L2015. [35] J.W. Glesener, A.A. Morrish, and K.A. Snail, J. Appl. Phys. 70 (1991) 5144. [36] P.H. Fang, T. Takeuchi, and E.Y. Chen, Solar Cells 28 (1990) 315. [37] V.S. Veerasamy, G.A.J. Amaratunga, J.S. Park, W.I. Milne, H.S. MacKenzie, and D. R. McKenzie, Appl. Phys. Lett. 64 (1994) 2297. [38] M. Koltun, D. Faiman, S. Goren, E.A. Katz, E. Kunoff, A. Shames, S. Shtutina, and B. Uzan, Sol. Energy Mater. Sol. Cells 44 (1996) 485. [39] H. A. Yu, T. Kaneko, S. Yoshimura, Y. Suhng, Y. Sasaki, and S. Otani, Appl. Phys. Lett. 69 (1996) 3042. [40] K. Mukhopadhyay, I. Mukhopadhyay, M. Sharon, T. Soga, and M. Umeno, Carbon 35 (1996) 963. [41] H.A. Yu, Y. Kaneko, S. Yoshimura, and S. Otani, Appl. Phys. Lett. 68 (1996) 547. [42] H.A. Yu, Y. Kaneko, S. Otani, Y. Sasaki, and S. Yoshimura, Carbon 36 (1998) 137. [43] Y. Hayashi, S. Ishikawa, T. Soga, M. Umeno, and T. Jimbo, Diam. Relat. Mater. 12 (2003) 687. [44] S. Adhikari, H.R. Aryal, D.C. Ghimire, A.M.M. Omer, S. Adhikary, H. Uchida, and M. Umeno, Diam. Relat. Mater. 15 (2006) 1894. [45] A.M.M. Omer, M. Rusop, S. Adhikari, S. Adhikary, H. Uchida, and M. Umeno, Diam. Relat. Mater. 14 (2005) 1084. [46] C.H. Lee, and K.S. Lim, Appl. Phys. Lett. 72 (1998) 106. [47] K.M. Krishna, T. Soga, T. Jimbo, and M. Umeno, Carbon 37 (1999) 531. [48] K.M. Krishna, M. Umeno, Y. Nukaya, T. Soga, and T. Jimbo, Appl. Phys. Lett. 77 (2000) 1472. [49] K.L. Narayanan, O. Goetzgberger, A. Khan,N. Kojima, and M. Yamaguchi, Sol. Energy Mater. Sol. Cells 65 (2001) 29. [50] N. Konofaos, E. Evangelou, and C.B. Thomas, J. Appl. Phys. 84 (1998) 4634. [51] N.A. Hastas, C.A. Dimitriadis, D.H. Tassis, and S. Logothetidis, Appl. Phys. Lett. 79 (2001) 638. [52] L.Z. Hao, Q.Z. Xue, X.L. Gao, Q. Li, Q.B. Zheng, and K.Y. Yan, J. Appl. Phys. 101 (2007) 053718. [53] X.M. Tian, M. Rusop, Y. Hayashi, T. Soga, T. Jimbo, and M. Umeno, Sol. Energy Mater. Sol. Cells 77 (2003) 105. [54] M. Rusop, S.M. Mominuzzaman, T. Soga, T. Jimbo, and M. Umeno, Sol. Energy Mater. Sol. Cells 90 (2006) 3205. [55] G.A.J. Amaratunga, D.E. Segal, and D.R. McKenzie, Appl. Phys. Lett. 59 (1991) 69. [56] Z.Q. Ma, and B.X. Liu, Sol. Energy Mater. Sol. Cells 69 (2001) 339. [57] Keithley, Application note series, Number 3026, Electrical characterization of photovoltaic materials and solar cells with the model 4200-SCS semiconductor characterization system. [58] M. Murayama, and T. Mori, Thin Solid Films 509 (2006) 123. [59] M.K. El-Adawi, and I.A. Al-Nuaim, Vacuum 64 (2002) 33. [60] T. Markvart, and L. Castaner, Solar cells: Materials, manufacture and operation, Elsevier, Oxford, 2005. [61] M.A. Green, Solar cells: Operating principles, technology, and system applications, Prentice Hall, New Jersey, 1982. [62] E. Tomasella, C. Meunier, and S. Mikhailov, Surf. Coat. Technol. 141 (2001) 286. [63] N.K. Cuong, M. Tahara, N. Yamauchi, and T. Sone, Surf. Coat. Technol. 174-175 (2003) 1024. [64] Y. Liu, C. Liu, Y. Chen, Y. Tzeng, P. Tso, and I. Lin, Diam. Relat. Mater. 13 (2004) 671. [65] S.R. Jian, T.H. Fang, and D.S. Chuu, J. Non-Cryst. Solids 333 (2004) 291. [66] G. Fanchini, A. Tagliaferro, B. Popescu, and E.A. Davis, J. Non-Cryst. Solids 299-302 (2002) 846. [67] N.D. Baydoğan, Mater. Sci. Eng. B 107 (2004) 70. [68] M.J. Paterson, Diam. Relat. Mater. 7 (1998) 908. [69] M. Weiler, S. Sattel, T. Giessen, K. Jung, and H. Ehrhardt, Phys. Rev. B 53 (1996) 1594. [70] A. Hu, Q.B. Lu, W.W. Duley, and M. Rybachuk, J. Chem. Phys. 126 (2007) 154705. [71] F. Piazza, O. Resto, and G. Morell, J. Appl. Phys. 102 (2007) 013301. [72] K.B.K. Teo, S.E. Rodil, J.T.H. Tsai, A.C. Ferrari, J. Robertson, and W.I. Milne, J. Appl. Phys. 89 (2001) 3706. [73] Langmuir, Phys. Rev. 33 (1929) 954. [74] H.R. Koenig, and L.I. Meissel, IBM J. Res. Develop. 14 (1970) 168. [75] A. Grill, Cold plasma in materials fabrication: From fundamentals to applications, IEEE Press, New York, 1994. [76] Z. Sun, C.H. Lin, Y.L. Lee, J.R. Shi, B.K. Tay, and X. Shi, J. Appl. Phys. 87 (2000) 8122. [77] G. Capote, R. Prioli, P.M. Jardim, A.R. Zanatta, L.G. Jacobsohn, and F.L. Freire Jr., J. Non-Cryst. Solids 338-340 (2004) 503. [78] G. Capote, F.L. Freire, L.G. Jacobsohn, and G. Mariotto, Diam. Relat. Mater. 13 (2004) 1454. [79] H. Tahara, K.I. Minami, A. Murai, T. Yasui, and T. Yoshikawa, Jpn. J. Appl. Phys. 34 (1995) 1972. [80] M. Rusop, X.M. Tian, S.M. Mominuzzaman, T. Soga, T. Jimbo, and M. Umeno, Sol. Energy 78 (2005) 406. [81] C. Thomsen, and S. Reich, Phys. Rev. Lett. 85 (2000) 5214. [82] M.A. Tamor, and W.C. Vassell, J. Appl. Phys. 76 (1994) 3823. [83] W.J. Hsieh, S.H. Lai, L.H. Chan, K.L. Chang, and H.C. Shih, Carbon 43 (2005) 820. [84] G.L. Dû, N. Celini, F. Bergaya, and F. Poncin-Epaillard, Surf. Coat. Technol. 201 (2007) 5815. [85] E. Riedo, F. Comin, J. Chevrier, F. Schmithusen, S. Decossas, and M. Sancrotti, Surf. Coat. Technol. 125 (2000) 124. [86] P. Papakonstantinou, D.A. Zeze, A. Klini, and J. McLaughlin, Diam. Relat. Mater. 10 (2001) 1109. [87] C. Oppedisano, and A. Tagliaferro, Appl. Phys. Lett. 75 (1999) 3650. [88] T. Katsuno, S. Nitta, H. Habuchi, V. Stolojan, and S.R.P. Silva, Appl. Phys. Lett. 85 (2004) 2803. [89] M. Lejeune, O. Durand-Drouhin, K. Zellama, and M. Benlahsen, Solid State Commun. 120 (2001) 337. [90] D. Beenaa, K.J. Lethya, R.V. Kumara, and V.P.M. Pillai, Sol. Energy Mater. Sol. Cells 91 (2007) 1438. [91] J. Tauc, Amorphous and liquid semiconductors, Plenum Press, London, 1974. [92] J. Tauc, R. Grigorovici, and A. Vancu, Phys. Status Solidi 15 (1966) 627. [93] A. Foulain, J. Phys. D: Appl. Phys. 36 (2003) 394. [94] G.G. Stoney, Proc. R. Soc. London Ser. A 82 (1909) 172. [95] L.B. Valdes, Proc. IRE 42 (1954) 420. [96] L.J. Van der Pauw, Philips Res. Rep. 13 (1958) 1. [97] K.M. Krishna, Y. Nukaya, T. Soga, T. Jimbo, and M. Umeno, Sol. Energy Mater. Sol. Cells 65 (2001) 163. [98] X.M. Tian, T. Soga, T. Jimbo, and M. Umeno, J. Non-Cryst. Solids 336 (2004) 32. [99] A. Feltrin, and A. Freundlich, Renewable Energy 33 (2008) 180. [100] G. Fedosenko, A. Schwabedissen, D. Korzec, and J. Engemann, Surf. Coat. Technol. 142-144 (2001) 693. [101] V.J. Trava-Airoldi, L.F. Bonetti, G. Capote, L.V. Santos, and E.J. Corat, Surf. Coat. Technol. 202 (2007) 549. [102] M. Benlahsen, and M. Therasse, Carbon 42 (2004) 2255. [103] B. Bouchet-Fabre, G. Lazar, D. Ballutaud, C. Godet, and K. Zellama, Diam. Relat. Mater. 17 (2008) 700. [104] E. Braca, G. Saraceni, J.M. Kenny, L. Lozzi, and S. Santucci, Thin Solid Films 415 (2002) 195. [105] M. Lejeune, O. Durand-Drouhin, D. Ballutaud, and M. Benlahsen, Surf. Coat. Technol. 151-152 (2002) 242. [106] A.C. Ferrari, and J. Robertson, Phys. Rev. B 64 (2001) 75414. [107] A.C. Ferrari, S.E. Rodil, and J. Robertson, Phys. Rev. B 67 (2003) 155306. [108] C. Godet, N.M.J. Conway, J.E. Bourée, K. Bouamra, A. Grosman, and C. Ortega, J. Appl. Phys. 91 (2002) 4154. [109] J. Schwan, S. Ulrich, V. Batori, H. Ehrhardt, and S.R.P. Silva, J. Appl. Phys. 80 (1996) 440. [110] M. Lejeune, O. Durand-Drouhin, S. Charvet, A. Grosman, C. Ortega, and M. Benlahsen, Thin Solid Films 444 (2003) 1. [111] O. Durand-Drouhin, M. Benlahsen, M. Clin, and K. Zellama, Diam. Relat. Mater. 13 (2004) 1854. [112] A. Grill, and V. Patel, Diam. Relat. Mater. 2 (1993) 1519. [113] C.J. Torng, J.M. Sivertsen, J.H. Judy, and C. Chang, J. Mater. Res. 5 (1990) 2490. [114] J.C. Angus, and Y. Wang, In: R.E. Clausing et al. Diamond and diamond-like films and coatings, Plenum Press, New York, 1991. [115] D.F. Franceschini, C.A. Achete, and F.L. Freire, Appl. Phys. Lett. 60 (1992) 3229. [116] J.R. Shi, X. Shi, Z. Sun, E. Liu, B.K. Tay, and S.P. Lau, Thin Solid Films 366 (2000) 169. [117] S.M. Mominuzzaman, M. Rusop, T. Soga, T. Jimbo, and M. Umeno, Sol. Energy Mater. Sol. Cells 90 (2006) 3238. [118] H. Kinoshita, and A. Yamauchi, J. Vac. Sci. Technol. A 14 (1996) 1933.
摘要: 本論文主要是在探討以射頻電漿輔助化學氣相沉積法及射頻濺鍍法製備n型及p型碳薄膜之製造與特性研究。製程條件為不同射頻功率與不同氮氣/甲烷比。 當射頻功率由100增加到400 W時,非晶質含氮碳薄膜之氮含量會隨之增加,結構亦趨向於石墨化;而非晶質含氮碳/p型矽之閉路電流與光電能源轉換效率會隨之增加;但開路電壓與填滿因子則與射頻功率幾乎無關。當射頻功率為400 W時,非晶質含氮碳/p型矽有最佳的光伏特性質。 當氮氣/甲烷比由0 增加到1.4時,非晶質含氮碳薄膜之sp2區域尺寸、光學能隙值、楊氏模數及硬度會隨之增加;而殘留應力則會隨之減少。當氮氣/甲烷比為1.4時,非晶質含氮碳薄膜達到最大的應力釋放。當氮氣/甲烷比由0.2 增加到0.33時再繼續增加至1.0,非晶質含氮碳/p型矽之閉路電流與光電能源轉換效率會先隨之增加然後減少,減少的原因主要是由於碳氮合金的形成;但開路電壓與填滿因子則與氮氣/甲烷比幾乎無關。當氮氣/甲烷比為0.33時,非晶質含氮碳/p型矽有最佳的光伏特性質。 當射頻功率由200增加到500 W時,非晶質含硼碳薄膜之硼含量會隨之增加,結構亦趨向於石墨化。當射頻功率由300增加到400時再繼續增加至500 W時,非晶質含氮碳/n型矽之開路電壓、閉路電流與光電能源轉換效率會先隨之增加然後減少;但填滿因子則會隨射頻功率先減少然後增加。當射頻功率為400 W時,非晶質含硼碳/n型矽有最佳的光伏特性質。 本研究中,n型碳/p型矽與p型碳/n型矽之光電能源轉換效率相較於文獻下都顯得很低,但可藉由減少缺陷與氫氣造成之懸吊鍵;消除元件的串聯電阻與採用雙或多重光學能隙值多界面結構來增進太陽電池的品質。因此,n型碳/p型矽與p型碳/n型矽之光伏特性質可藉由在射頻電漿輔助化學氣相沉積系統及射頻濺鍍系統中,增加射頻功率、增添外加偏壓與磁場來改善。
Fabrication and characteristics of n-type and p-type carbon films prepared by radio-frequency plasma enhanced chemical vapor deposition (rf-PECVD) and rf-sputtering are investigated. The process parameters including rf-powers and nitrogen/methane (N2/CH4) ratios are considered. As the rf-power raises from 100 to 400 W, N doping content of nitrogenated amorphous carbon (a-C:N) films increases and the microstructure of a-C:N films was transformed to graphite-like. Alternatively, short-circuit current (Isc) and conversion efficiency (η) of a-C:N films on p-type silicon (p-Si) increase with increasing the rf-power, but open-circuit voltage (Voc) and fill factor (FF) are less dependent on the rf-power. The best performance of a-C:N films on p-Si is achieved with rf-power of 400 W in this work. As the N2/CH4 ratio increases from 0 to 1.4, sp2 domain size of a-C:N films increases, while optical band gap, Young's modulus and hardness of a-C:N films decrease. Residual stress of a-C:N films decreases with increasing the N2/CH4 ratio, and the maximum stress reduction of a-C:N films is achieved with N2/CH4 ratio of 1.4 in this work. Alternatively, Isc and η of a-C:N films on p-Si increase with increasing the N2/CH4 ratio from 0.2 to 0.33, and then decrease with further increasing the N2/CH4 ratio from 0.33 to 1.0 due to the formation of CNx. Nevertheless, Voc and FF are less dependent on the N2/CH4 ratio. The best performance of a-C:N films on p-Si is achieved with N2/CH4 ratio of 0.33 in this work. As the rf-power raises from 200 to 500 W, B doping content of a-C:B films increases and the microstructure of a-C:N films was transformed to graphite-like. Alternatively, Voc, Isc, and η of a-C:N films on p-Si increase with increasing the rf-power from 300 to 400 W, and then decrease with further increasing the rf-power from 400 to 500 W, but FF are reverse dependent on the rf-power. The best performance of a-C:N films on n-type silicon (n-Si) is achieved with rf-power of 400 W in this work. The power conversion efficiency, η of n-type carbon (n-C) on p-Si and p-type carbon (p-C) films on n-Si is relatively low in this work. However, it can be referred to improve the solar cell quality by reduce the defects and dangling bonds due to hydrogen, eliminate the device electrical resistance, and adopt the tandem structure with two or more optical band gaps of a-C films in photovoltaic solar cells. Therefore, it is expected that the performance of n-C films on p-Si and p-C films on n-Si can be further improved by increasing the rf-power, or adding applied bias and magnetic field on the rf-PECVD and rf-sputtering systems.
URI: http://hdl.handle.net/11455/10638
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.