請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/10641
標題: 氧含量對鎳鐵/氧化錳奈米雙層薄膜之結構及磁性質之影響
Effect of oxygen contents on structures and magnetic properties of NiFe/Mn-oxide bilayers
作者: 陳宗杰
Chen, Tsung-Chieh
關鍵字: exchange bias
交換偏壓
出版社: 材料科學與工程學系所
引用: 第一章參考文獻 [1] W. P. Meiklejohn, C. P. Bean, Phys. Rev., 102, 1413 (1956). [2] W. P. Meiklejohn, J. Appl. Phys., 33, 1328 (1962). [3] D. Mauri, H. C. Siegmann, J. Appl. Phys., 82, 3047 (1987). [4] A. P. Malozemoff, Phys. Rev. B., 35, 3679 (1987). [5] N. C. Koon, Phys. Rev. Lett., 78, 4865 (1997). [6] T. C. Schulthess and W. H. Butler, Phys. Rev. Lett., 81, 4516 (1998). [7] A. E. Berkowitz, Kentaro Takano, J. Magn. Magn. Mater., 200, 552 (1999). [8] J. Nogues, Ivan K. Schuller, J. Magn. Magn. Mater., 192, 203 (1999). [9] Nicola A. Spaldin,”Magnetic materials”. [10] David Jiles, “Introduction to magnetism and magnetic materials”, Chapman & Hall. [11] 金重勳主編,“磁性技術手冊”, 中華民國磁性技術協會。 [12] N. Koon, Phys. Rev. Lett., 78, 4865 (1997). [13] 魏德新、許瑤真,”影像式光電子顯微術於磁性薄膜及微結構研究的介紹”,物理雙月刊廿六卷四期。 [14]A. Baruth, D. J. Keavney, J. D. Burton, K. Janicka, E. Y. Tsymbal, L. Yuan, S. H. Liou, and S. Adenwalla, Phys. Rev. B, 74, 054419 (2006). [15] D. Thompson et al., IEEE Trans. Magn.,11, 1036 (1975). [16] R. C. O’handley,”Modern Magnetic Materials”,John Wiley and sons Inc.(2002). [17] J. Noguesa, J. Sort, V. Langlais, V. Skumryev, S. Surinach, J.S. Munoz, M.D. Baro, Physics Reports, 422, 65 (2005). [18] 胡裕民、黃榮俊,”鐵磁/反鐵磁金屬薄膜之間的交換磁異向性”,物理雙月刊廿廿卷六期。 [19] L. Neel, Ann Phys., 2, 61 (1967). [20]U. Nowak and K. D. Usadel, Phys. Rev. B., 66, 014430 (2002). [21]B. Beckmann, U. Nowak, and K. D. Usadel, Phys. Rev. Lett., 91, 187201-1 (2003). [22] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau and F. Pctroff, Phys. Rev. Lett., 61, 2472 (1998). [23] Modern Magnetic Materials, R. C. O’Handley, John Wiley and Sons, Inc. New York (2000). [24] Phase Diagrams of Ternary Iron Alloys, V. Raghavan, The Indian Institute of Mateals, part 5, 7 (1989). [25] P. P. Freitas, J. L. Leal, T. S. Plaskett, L. V. Melo, and J. C. Soares, J. Appl. Phys., 75, 6480 (1994). [26] T. C. Anthony, J. Brug, and S. Zhang, IEEE Trans. Magn., 30, 3819 (1994). [27] C.-L. Lin, J. M. Sivertsen, and J. H. Judy, IEEE Trans. Magn., 30, 3834 (1994). [28] J. Fujikata, K. Isihara, K. Hayashi, H. Yamamoto, and K. Yamada, IEEE Trans. Magn., 31, 3936 (1995). [29] B. Dieny, V. S. Speriosu, S. S. P. Parkung, B.A. Gurney, D. R. Wilhoit, and D. Mauri, Phys. Rev., 43, 1297 (1991). [30] J. S. Moodera et al., Phys. Rev. Lett., 74, 3273 (1995). [31] G. A. Prinz, Science, 282, 1660 (1998). [32] L. Geppert, IEEE Spectrum, 49, March 2003. [33] A. E. Berkowitz and K. Takano, J. Magn. Magn. Mater., 200, 552 (1999). [34] Jamal Ben Youssef, David Spenato, and Henri Le Gall, J. Appl. Phys., 91, 7239 (2002). [35] P. Z. Si, D. Li, J. W. Lee, C. J. Choi, Z. D. Zhang, and D. Y. Geng, Appl. Phys. Lett., 87, 133122 (2005). [36] R. Gupta, K.P. Lieb, Y. Luo, G.A. Muller, P. Schaaf, and K. Zhang, Eur. Phys. J. B 63, 501 (2008). 第二章參考文獻 [1] R. C. Weast, ”Handbook of Chemistry and Physics”, CRC Press, Inc 1986. [2] E. M. Levin et al, ”Phase Diagram for Ceramists”, Amer. Cer. Soc., 1964. [3] T. C. Anthony, J. Brug, and S. Zhang, IEEE Trans. Magn., 30, 3818 (1994). [4] A. E. Berkowitz and K. Takono, J. Magn. Magn. Mater., 200, 552 (1999). [5] Lederman D., Nogues J., Phys. Rev. B. 56(5), 2332 (1997). [6] Journal of Phase Equilibria and Diffusion Vol. 28 No. 3 (2007). [7] B. D. Cullitu and S. R. Stock, ”Element of X-Ray Diffraction”. [8] Hae-Geon Lee, ”Chemical thermodynamics for metals and materials”. [9] J. J.Cuomo and S. M. Rossnagel, H. R. Kaufman, “Handbook of ion beam processing technology:principles, deposition, film modification , and synthesis”, Noyes Publication, 1989. [10]李正中,“薄膜光學與鍍膜技術”,藝軒圖書出版社,2001。 [11] H. R. Kaufman, R. S. Robinson, “End Hall Ion Source”, J. Vac. Sci. Technol. A, 5(3), 2081 (1987). [12] C. Weissmantle, “Ion Beam Deposition of Special Film Structure”, Vac. Sci. Technol., 18, 179 (1989). [13] T. C. Huang, G. Lim, F. Parmigiani, and E. Kay, J. Vac. Sci. Technol. A, 3, 216 (1985). [14] R. A. Roy, D. Yee, and J. J. Cuomo, J. Vac. Sci. Technol. A, 6, 1621 (1988). [15] H. R. Kaufman, R. S. Robinson, “End Hall Ion Source”, J. Vac. Sci. Technol. A, 5(3), 2081 (1987). 第三章參考文獻 [1] C.H.Lai, P.H.Huang, J.Appl. Phys., 95, 7222 (2004). [2]林麗娟,”X光繞射原理及其應用”,工業材料86期。 [3] Bruce M. Moskoeitz, Hitchhhiker’s Guide to magnetism. [4]汪建民主編,”材料分析”,中國材料科學學會。 [5] David B. Williams and C. Barry Carter, “Transmission Electron Microscopy”, Plenum Press (1996). [6]龔志榮,駱榮富,”電子顯微鏡教材大綱”。 [7] David Jiles,”Magnetism and Magnetic Materials”, Chapman & Hall,(1991). [8] J. Claudon, F. Balestro, F.W. J. Hekking, and O. Buisson, Phys Rev. Lett. 93, 187003 (2004). [9]楊鴻昌,”最敏感的感測元件SQUID及其前瞻性應用”,物理雙月刊廿四卷五期。 [10] L. H. Lewis, K. M. Bussmann, Rev. Sci. Instrum. 67, 3537 (1996). [11] Y. U. Idzerda, L.H. Tjeng, H.-J. Lin, C. J. Gutierrez, G. Meigs, C.T. Chen, Phys. Rev. B 48, 4144 (1993). [12] C. M. Schneider, Z. Celinski, M. Neuber, C. Wilde, M. Grunze, K. Meinel, J. Kirschner, J. Phys.: Condens. Mater. 6, 1177 (1994). [13]魏德新、許瑤真,”光電子激發顯微鏡於磁性薄膜及微結構研究的介紹”,物理雙月刊廿六卷四期。 [14] K. W. Lin, PhD. Thesis, State University of New York at Stony Brook,(2002). 第四章參考文獻 [1]John F. Moulder, William F. Stickle, Peter E. Sobol, and Kenneth D. Bomben, “Handbook of X-ray Photoelectron Spectroscopy”. [2]Ivanov-Emin B.N., Nevskaya N.A., Zaitsev B.E., Ivanova T.M. Zh. Neorg. Khimii 27, 3101 (1982). [3]R.C.O’handley,’’Modern Magnetic Materials’’,John Wiley and sons Inc.,2002 [4]P.Z. Si, D. Li, C.J. Choi, Y.B. Li, D.Y. Geng, Z.D. Zhang, Solid State Communications 142, 723 (2007). [5] J. Li and Y. J. Wang, Appl. Phys. Lett., 70, 3047 (2005). [6] F. Radu, M. Etzkorn, R. Siebrecht, T. Schmitte, K. Westerholt, and H. Zabel, Phys. Rev. B, 67, 134409 (2003). [7] S. Brems, K. Temst, and C. van Haesendonck, Phys. Rev. Lett., 99, 067201(2007). [8] K.-W. Lin, R. J. Gambino, and L. H. Lewis, J. Appl. Phys., 93, 6590(2003). [9] J. Nogués, J. Sort, V. Langlais, V. Skumryev, S. Surinach, J. S. Munoz,and M. D. Baro, Phys. Rep., 422, 65 (2005). [10] D. Mauri, E. Kay, D. Scholl, and J. K. Howard, J. Appl. Phys., 62, 2929(1987). [11] M. A. Morales, R. Skomski, S. Fritz, G. Shelburne, J. E. Shield, M. Ying,S. O’Brien, and D. L. Leslie-Pelecky, Phys. Rev. B, 75, 134423 (2007). [12] K. Dwight and N. Menyuk, Phys. Rev., 119, 1470 (1960). [13] 魏德新、許瑤真,“光電子激發顯微鏡於磁性薄膜及微結構研究的介紹”,物理雙月刊廿六卷四期。 [14] A. Baruth, D. J. Keavney, J. D. Burton, K. Janicka, E. Y. Tsymbal, L. Yuan, S. H. Liou, and S. Adenwalla, Phys. Rev. B, 74, 054419 (2006). [15] G. Salazar-Alvarez, J. Sort, S. Surinach, M. D. Baro, and J. Nogues, J.Am. Chem. Soc., 129, 9102 (2007). [16] K.-W. Lin, J.-Y. Guo, T.-J. Chen, H. Ouyang, E. Vass, and J. van Lierop, J. Appl. Phys., 104, 123908 (2008). [17] F. Radu, M. Etzkorn, T. Schmitte, R. Siebrecht, A. Schreyer, K. Westerholt,and H. Zabel, J. Magn. Magn. Mater., 240, 251 (2002). [18] A. E. Berkowitz and K. Takano, J. Magn. Magn. Mater., 200, 552 (1999). [19] J. van Lierop, B. W. Southern, K.-W. Lin, Z.-Y. Guo, C. L. Harland, R. A.Rosenberg, and J. W. Freeland, Phys. Rev. B, 76, 224432 (2007). [20] J. McCord, C. Hamann, R. Schafer, L. Schultz, and R. Mattheis, Phys.Rev. B, 78, 094419 (2008). [21] K.-W. Lin, M.-R. Wei, and J.-Y. Guo, J. Nanosci. Nanotechnol., 9, 2023(2009). 附錄參考文獻 [1] 衛榮漢、賴梅鳳、張慶瑞,”磁性微結構中自旋磁化組態及其動態過程”,物理雙月刊廿六卷四期。 [2] L. D. Landau and E. M. Lifshitz, Sov. Phys. 8, 153 (1935). T. L. Gilbert, Phys. Rev. 100, 1243 (1955). [3] D. Mauri, E. Kay, D. Scholl, and J. K. Howard, J. Appl. Phys. 62, 2929 (1987). [4] M. D. Stiles and R. D. McMichael, Phys. Rev. B, 59, 3722 (1999). [5] R. C. O’handley,”Modern Magnetic Materials”,John Wiley and sons Inc.(2002).
摘要: 本研究利用雙離子束濺鍍系統製備鎳鐵(10nm)/氧化錳(20nm)雙層薄膜,探討其結構、磁性質及交換偏壓特性。穿透式電子顯微鏡研究結果顯示:鎳鐵薄膜為f.c.c.結構,晶格常數a~3.55Å;氧化錳薄膜結構會隨氧含量的增加形成α-錳(0% O2/Ar)、岩鹽氧化錳(21% O2/Ar)或正方氧化錳(tetragonal Mn3O4,41% O2/Ar),視氧含量的多寡而定。鎳鐵/氧化錳雙層薄膜之晶粒大小約為5~15nm。 磁性分析顯示:在5K時鎳鐵/錳雙層薄膜具有最大的交換偏壓場(Hex~ −300 Oe),而鎳鐵/氧化錳(21% O2/Ar)雙層薄膜具有最小的交換偏壓場(Hex~ −75 Oe),此可能由於氧化錳之異向能較錳為低之緣故。鎳鐵/氧化錳雙層薄膜之矯頑磁力隨氧含量之增加而增加,主要是由於較硬磁性之鐵氧磁體(ferrimagnet Mn3O4)生成所致,其中並伴隨著交換偏壓場之增加(Hex~ −150 Oe),這主要是由於鐵氧磁體(ferrimagnet Mn3O4)具有較大之異向能的緣故。 離子束轟擊反鐵磁層(錳)表面研究顯示:鎳鐵/錳(VEH=70 V)雙層薄膜其交換偏壓場(Hex~ −400 Oe)較鎳鐵/錳(VEH=0 V)雙層薄膜來的大,主要是由於離子束轟擊會產生非補償的錳磁矩所導致。然而,較高能量之離子束轟擊會導致交換偏壓場下降,可能是由於錳磁矩之有序排列受到破壞所致。 磁電傳輸性質分析顯示:鎳鐵/氧化錳雙層薄膜具有異向性磁電阻(AMR)性質。鎳鐵/氧化錳雙層薄膜在77K時總磁阻率會較室溫時來的大,這是由於聲子散射降低的緣故,而本系統中以鎳鐵/氧化錳(41% O2/Ar)雙層薄膜具有最大的總磁阻率(~3.26%),可能是由於界面間散射增加所致。
The structural and magnetic properties of NiFe(10 nm)/Mn-oxide(20 nm) bilayers were investigated. Transmission electron microscopy results have shown that the top NiFe layer consisted of a f.c.c. NiFe phase (a~ 3.55 Å). The bilayer bottom consisted of either b.c.c. α-Mn, rocksalt MnO, tetragonal Mn3O4, or a composite phase, depending on the percent of O2/Ar ratio used during dual ion-beam deposition. The grain sizes of these polycrystalline NiFe/Mn-oxide bilayers range from 5 nm to 15 nm. Magnetometry results at 5K indicate that the exchange bias field (Hex~ −300 Oe) is largest in a NiFe/Mn bilayer. The smallest Hex(~ −75 Oe) was found in NiFe/Mn-oxide (21% O2 /Ar ) bilayers. This is ascribed to the MnO (low magnetocrystalline anisotropy) formation by in situ Mn oxidation. In contrast, a further increase in the O2 /Ar ratio during deposition results in larger Hex(~ −150 Oe) and Hc. This is attributed to the oxidation of MnO into a harder ferrimagnet Mn3O4 (high magnetocrystalline anisotropy). The variations of the Hex are attributed to different bottom layer structures (Mn, MnO, and Mn3O4). However, Moderate ion-beam bombardment on the surface of the Mn layer may create uncompensated Mn spins that results in an enhanced Hex in the NiFe/Mn (VEH= 70V) bilayer. A misalignment of spins at the FM/AF interface from the effects of a higher ion-beam bombardment energy resulted in a drop in Hex. The magnetotransport studies have shown that these NiFe/Mn-oxide bilayers exhibit the anisotropic magnetoresistance (AMR) behavior. The total MR ratio measured at 77 K is larger than at room temperature, ascribed to the reduced interfacial scattering between FM and AF layer. The NiFe/Mn-oxide(41% O2/Ar) bilayer has the largest total MR ratio(~3.26%) among all samples at 77K. It is due to the strong anisotropic scattering at the interface.
URI: http://hdl.handle.net/11455/10641
顯示於類別:材料科學與工程學系

文件中的檔案:
沒有與此文件相關的檔案。


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。