Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10645
標題: 輕質骨材之吸水特性及其對輕質骨材混凝土高溫熱學與力學性質之影響
Water Absorption Characteristic of Lightweight Aggregates and its Effect on the Thermal and Mechanical Properties of Lightweight Aggregate Concrete at Elevated Temperatures
作者: 何國意
Ho, Kuo-Yi
關鍵字: 輕質骨材:吸水性:輕質骨材混凝土
lightweight aggregate
鋼筋混凝土構件
火害
water absorption
lightweight aggregate concrete
reinforced concrete members
fire damage
出版社: 土木工程學系所
引用: 1. 李名浩,「旋窯燒製水庫淤泥輕質骨材之研究」,碩士論文,國立中興大學土木工程系,民國92年。 2. 陳豪吉,「鋼筋輕質骨材混凝土」,民國100年。 3. 顏聰,[輕質混凝土之工學性質與工程特性] ,混凝土工程技術研習會,台灣營建研究中心,民國64年。 4. 黃中和,「輕質骨材混凝土樑耐震行為之研究」,博士論文,國立中興大學土木工程系,民國94年。 5. 陳澤修,「綠色建築新材料冷結型煤灰輕質骨材」,現代營建,208期,民國86年。 6. 王順元, [淤泥輕質骨材燒製研究] ,碩士論文,中興大學,民國88年。 7. 顏聰、林宜清、黃玉麟、陳豪吉,「輕質骨材混凝土配比設計及拌製技術之研究」,內政部建築研究所成果報告,MOIS830012,民國83年。 8. J.J.Shideler,“Lightweight Aggregate Concrete for Structural USE”,ACI Journal October ,1957. 9. Spratt,H. ,“The Structural Use of Lightweight Aggregate Concrete”, C.C.A.,New York,N. Y.,1974. 10. Weigler,H.,“Gefuegedichter Leichtbeton”,Beton,PP.292,1972. 11. 蔡昆城,「淤泥再生輕質骨材混凝土工程性質之研究」,碩士論文,國立台灣科技大學營建工程研究所,民國91年。 12. 高章育,「輕質骨材混凝土之耐震性質研究」,碩士論文,國立中興大學土木工程研究所,民國91年。 13. 顏聰,「土木材料」,中華輕質骨材協會,民國95年2月。 14. 楊時元,陶粒原料性能及找尋方向探討,建地材料,N0.4,14-19頁,民國96年。 15. 湯兆緯,「場鑄輕質粒料混凝土橋版之施作」,台、中、日、美地區輕質骨材混凝土產業成果研討會,台中,民國95年。 16. 劉玉雯、陳豪吉、湯兆緯,「輕質骨材混凝土之隔熱性質」,輕質骨材及輕質骨材混凝土應用研討會論文集,嘉義,臺灣,83-98頁,民國92年。 17. Zhang, M.H.,Microstructure and properties of high strength lightweight concrete. PhD Thesis, the Norwegian University of Science and Technology, N-7034 Trondheim, Norway,1989. 18. Holm,T.A.,Ooi,O.S.,and Bremner,T.W.,“Moisture Dynamics in Lightweight Aggregate and Concrete”, Expanded Shale Clay & Slate Institute, Publication # 9340,2004. 19. 蘇南、林維明,「國內外輕質混凝土科技之發展」,結構工程,第六卷,第四期,91-109頁,民國90年12月。 20. 林維明,「結構用輕質混凝土性質」,結構工程,第七卷,第二期,89-119頁,民國91年6月。 21. 莊文宏、楊宏仁、張延犖,「輕質混凝土應用於橋樑工程可行性評估」,中華技術季刊,10月號,第68期,民國94年。 22. Short,A. and Kinniburgh, W.,“Lightweight Concrete”,Formerly Building Research Establishment,Garston,Watford, U.K.,1976. 23. L.Vandewalle“Concrete creep and shrinkage at cyclic ambient conditions”Cement & Concrete Composites 22(2000)pp.201-208. 24. “International Recommendations for the Design and Construction of Concrete Structures”, CEB/FIP,1976. 25. P.Lura and K.Van Breugel,“Autogenous and drying shrinkage of high strength lightweight aggregate concrete at early ages-the effect of specimen size”,International RILEM Conference, PP.335-342,2002. 26. M.N. Haque,H.A1-Khaiat,O.Kayali,“Strength and durability of lightweight concrete”,Cement & Concrete Composites,V26,pp. 307-314,2004. 27. 吳敏洽,「受熱後混凝土內部之力學性質變化」,國立中興大學,碩士論文,民國76年。 28. 鄭錦銅,「混凝土在高溫下之熱傳及微觀結構變化」,國立中興大學,碩士論文,民國76年。 29. 劉玉雯,「鋼筋混凝土高溫作用後握裹行為之微觀研究」,國立中興大學,碩士論文,民國79年。 30. 高金盛,沈進發,陳舜田,「混凝土火害溫度之綜合評估」,第二屆結構工程研討會論文集(I),49-59頁,南投日月潭,台灣,民國83年。 31. 陳舜田,「火害工程研究」,結構工程,第十一卷,第一期,39-46頁,民國85年。 32. 沈進發,陳舜田,沈得縣,「混凝土結構物火害後現場勘查之程序」,結構工程,第十三卷,第二期,43-59頁,民國87年。 33. 沈得縣,陳舜田,沈進發,「各國火害後混凝土結構物安全評估程序介紹」,建築物火害及災後安全評估法研討會論文集,43-70頁,台北,台灣,民國88年4月16日。 34. 陳舜田,「國內外火害工程研究簡介」,建築物火害及災後安全評估法研討會論文集,31-42頁,台北,台灣,民國88年4月16日。 35. Schneider,U.,Concrete at High Temperatures–A General Review,in Fire Safety Journal, Elsevier, Vo.13,No.1, pp.55-68,1988.36. Metha, P.K., “Concrete-Structure, Material and Properties”, Prentice Hall,Englewood Cliffs,J. J.,1986. 37. Abrams, M.S.,Performance of Concrete Structures Exposed to Fire,Research and Development Bulletin RD060,Portland Cement Association,1977. 38. Collet, Y.,Etude des proprietes du beton soumis a des temperatures elevees entre 200 net 900°C,Annales des Travaux Publics Beiges, No.4,pp.332-338 ,1977. 39. Eurocode 2: Design of concrete structures. prEN 1992-1-2 part 1.2:General rules–Structural fire design, European Committee for Standardization, Brussels,2002. 40. K.Prasad and H. Baum,“Fire Structure Interface and Thermal Response of World Trade Center Towers”,NIST NCSTAR 1-5G,2005. 41. Harmathy,T.Z. Thermal Properties of Concrete at Elevated Temperatures, ASTM Journal of Materials,VO1.5,No.1, March pp.47-74 (NRC 11266),1970. 42. 沈進發,陳舜田,林尚賢,”以X射線繞射試驗法推測混凝土受火害程度之研究”,國科會專案研究計畫NSC80-0410-E011-08研究報告,民國80年。 43. 沈進發,陳舜田,張郁慧,”火害延時對混凝土材料性質之影響”,國科會專案研究計畫NSC 82-0410-E011-079 研究報告,民國82年。 44. Dougill,John W.,“Materials Dominated Aspects of Design for Structural Fire Resistance of Concrete Structure”. 45. Copies, W.J.,“The spalling of normal weight and lightweight concrete exposed to fire”,1987. 46. Khoury,G.A.,“Compressive strength of concrete at high temperatures:a reassessment,” Magazine of Concrete Research,Vol.44, pp.291-309, 1992. 47. Mohamedbhai,G.T.G.,“Effect of exposure time and rates of heating and cooling on residual strength of heated concrete,”Magazine of Concrete Research, Vol. 38,pp. 151-159,1986. 48. Abrams,M.S.,“Concrete Strength of Concrete at temperatures to 1600℉,”American Concrete Institute,SP-25,1968. 49. EC2 , “ Eurocode 2 : Design of Concrete Structures. ENV1992-1-2: General Rules–Structural Fire Design”. European Committee for Standardization, Brussels, Belgium ,1993. 50. Lie,T.T.,“Residual strength of fire exposed reinforced concrete columns ”,ACI publication SP 92-9,1986. 51. EC3,“Eurocode 3: Design of Steel Structures. ENV 1993-1-2: General Rules–Structural Fire Design”.European Committee for Standardization, Brussels, Belgium ,1995. 52. 林英俊,「高強度混凝土梁火害後撓曲行為之研究」,NSC81-0410-E011-09,國科會專題研究計畫報告,台北,民國81年。 53. 洪敏勝,「火害後混凝土受壓應力應變曲線與鋼筋混凝土短樑之抗剪強度研究」,國立成功大學建築研究所,碩士論文,民國95年。
摘要: 本研究探討輕質骨材吸水特性對混凝土高溫力學性質與熱傳導性質之影響外,亦進行鋼筋混凝土構件之承載行為試驗,並拌製常重混凝土為對照組進行分析比較。 試驗內容分兩階段,第一階段為混凝土材料基本性質試驗,包括抗壓強度、抗彎強度、劈裂強度、彈性模數及熱傳導係數等試驗;第二階段為鋼筋混凝土樑、版構件之承載行為與隔熱等防火性能之試驗。試驗變數包括:輕質骨材預濕程度(烘乾狀態及預濕30 min)、最高火害溫度(400℃、600℃及800℃)等。 就混凝土材料性質而言,試驗結果顯示,高溫作用時常重混凝土熱傳導係數明顯高於輕質混凝土,主要因素是由於輕質骨材混凝土的粗骨材內部為多孔性結構材料所影響,以致熱能不易傳遞。而輕質骨材預濕程度較高時,因緻密性較低,使輕質混凝土之熱傳導係數數值略微下降。輕質混凝土劈裂及抗彎強度試驗中顯示,在受低於最高400℃火害溫度時,反而會略微增加,可能是由於各系混凝土內部水與水泥未完全水化作用的部份因受到溫度的提升,使得內部水與水泥完全作用而提高抗彎強度。 就鋼筋混凝土樑、版構件試驗而言,試驗結果顯示,在未產生爆裂之情況下,使用不同預濕程度之輕質骨材所拌製之混凝土受高溫作用時,其力學性質及熱學性質之變化趨勢會較常重混凝土和緩。但採用烘乾骨材之輕質混凝土則傾向於具有較高之爆裂機率。另外,輕質骨材之預濕程度,對於鋼筋混凝土樑、版構件高溫承載行為之影響,並無明顯差異。
The research discuss the water absorption characteristic of lightweight aggregates and its effect on the thermal and mechanical properties of lightweight aggregate concrete. The contexts of the research are separated by two parts. The first part is the basic property tests of the concrete material, including compressive strength, flexural strength, splitting strength, elastic modulus and thermal conductivity. The second part is the to load bearing behavior, fire resistance and heat insulation tests of reinforced concrete beams members and slab members. The experiment variables include pre-wetted time of lightweight aggregates (oven dry, 30 min) and the maximum elevated temperatures (400℃, 600℃, and 800℃). For the property of the concrete material, the experimental results showed that the thermal conductivity of normal concrete is higher than lightweight aggregate concretes at elevated temperature. The main reason is because the multiple pore structure in the lightweight aggregate concretes reduces the thermal conductivity. While at the higher pre-wetted time, the thermal conductivity of the lightweight aggregate concretes slightly reduced due to the lower density. The splitting strength and flexural strength of the lightweight aggregate concretes experimental results showed that, the splitting strength and flexural strength slightly increased at lower than the 400℃ maximum elevated temperature. It is because the water inside the concrete and the cement with un-completely hydrate role were heated by increasing temperature so that the inside water complete role with concrete and promote the flexural strength. For the tests of reinforced concrete beams members and slab members, the experimental results showed that, variations in mechanical and thermal properties due to the elevated temperatures for lightweight aggregate concretes with different pre-wetted time were all smaller the those for normal concrete if the spalling of concrete did not occur. However, there were higher chances to spalling when we choose lightweight aggregates with oven dry. Furthermore, there were no difference of to load bearing behavior at elevated temperature between the pre-wetted time of lightweight aggregates and reinforced concrete beams members and slab members.
URI: http://hdl.handle.net/11455/10645
其他識別: U0005-1408201217113000
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1408201217113000
Appears in Collections:土木工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.