Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10677
標題: 前驅物植入方式合成中空ZnO暨中空Pt-Fe2O3複合殼層微球之研究
Synthesis of ZnO and Pt-Fe2O3 composite particles with hollow interiors by precursors implantation
作者: 郭旻鑫
Kuo, Min-Hsin
關鍵字: zinc oxide
氧化鋅
iron oxide
platinum
hollow sphere
氧化鐵
白金
空心球
出版社: 材料科學與工程學系所
引用: 1. X. F. Zhou, Z. L. Hu, Y. Chen, H.Y. Shang, “Microscale sphere assembly of ZnO nanotubes,” Mater. Res. Bull., 43, 2790-2798, 2008 2. Z. W. Pan, Z. R. Dai, Z. L. Wang, “Nanobelts of Semiconducting Oxides,” Science, 291, 1947-1949, 2001 3. B.C. Lee, O. Voskoboynikov, C.P. Lee, “III-V Semiconductor nano-rings,” Physica E, 24, 87-91, 2004 4. T. Ohira, O. Yamamoto, Y. Iida, Z. Nakagawa, “Antibacterial activity of ZnO powder with crystallographic orientation,” J. Mater. Sci.-Mater. Med., 19, 1407-1412, 2008 5. P. Tartaj, M. P. Morales, S. V. Verdaguer, T. G. Carreno, C. J. Serna, “The preparation of magnetic nanoparticles for applications in biomedicine,” J. Phys. D: Appl. Phys., 36, 182-197, 2003 6. S. W. Cao, Y. J. Zhu, M. Y. Ma, L. Li, L. Zhang, “Hierarchically Nanostructured Magnetic Hollow Spheres of Fe3O4 and γ-Fe2O3 : Preparation and Potential Application in Drug Delivery,” J. Phys. Chem. C, 112, 1851-1856, 2008 7. I. Baker, Q. Zeng, W. Li, C. R. Sullivan, “Heat deposition in iron oxide and iron nanoparticles for localized hyperthermia,” J. Appl. Phys., 99, 08H106, 2006 8. C. Hu, Z. Gao, X. Yang, “Hematite Hollow Spheres with Excellent Catalytic Performance for Removal of Carbon Monoxide,” Chem. Lett., 35, 1288-1289, 2006 9. X. W. Lou, L. A. Archer, Z. Yang, “Hollow Micro-/Nanostructures: Synthesis and Applications,” Adv. Mater., 20, 3987-4019, 2008 10. X. L. Zhang, R. Qiao, J. C. Kim, Y. S. Kang, “Inorganic Cluster Synthesis and Characterization of Transition-Metal-Doped ZnO Hollow Spheres,” Cryst. Growth Des., 8, 2609-2613, 2008 11. C. Song, C. Wang, H. Z. X. Wu, L. Dong, Y. Chen, “ Preparation, Characterization and Catalytic Activity for CO Oxidation of SiO2 Hollow Spheres Supporting CuO Catalysts,” Catal. Lett., 120, 215-220, 2008 12. P. M. Arnal, M. Comotti, F. Schith, “High-Temperature-Stable Catalysts by Hollow Sphere Encapsulation,”Angew. Chem. Int. Ed., 45, 8224-8227, 2006 13. F. Caruso, R. A. Caruso, H. Mohwald, “Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating,” Science, 282, 1111-1114, 1998 14. F. Caruso, X. Shi, R. A. Caruso, A, Susha, “ Hollow Titania Spheres from Layered Precursor Deposition on Sacrificial Colloidal Core Particles,” Adv. Mater., 13, 740-744, 2001 15. C. J. Martinez, B. Hockey, C. B. Montgomery, S. Semancik, “ Porous Tin Oxide Nanostructured Microspheres for Sensor Applications,” Langmuir, 21, 7937-7944, 2005 16. F. Caruso, M. Spasova, A. Susha, M. Giersig, R. A. Caruso, “ Magnetic Nanocomposite Particles and Hollow Spheres Constructed by a Sequential Layering Approach,” Chem. Mater., 13, 109-116, 2001 17. A. Khanal, Y. Inoue, M. Yada, K. Nakashima, “Synthesis of Silica Hollow Nanoparticles Templated by Polymeric Micelle with Core-Shell-Corona Structure,” J. Am. Chem. Soc., 129, 1534-1535, 2007. 18. S. W. Kim, M. Kim, W. Y. Lee, T. Hyeon, “ Fabrication of Hollow Palladium Spheres and Their Successful Application to the Recyclable Heterogeneous Catalyst for Suzuki Coupling Reactions,” J. Am. Chem. Soc., 124, 7642-7643, 2002 19. H. Xu, W. Wei, C. Zhang, S. Ding, X. Qu, J. Liu, Y. Lu, Z. Yang, “Low-temperature facile template synthesis of crystalline inorganic composite hollow spheres,” Chem. Asian J. 2, 828-836, 2007. 20. S. B. Yoon, K. Sohn, J. Y. Kim, C. H. Shin, J. S. Yu, T. Hyeon, “Fabrication of Carbon Capsules with Hollow Macroporous Core/Mesoporous Shell Structures,” Adv. Mater., 14, 19-21, 2002 21. F. J. Suarez, M. Sevilla, S. Alvarez, T. V. Solis, A. B. Fuertes, “ Synthesis of Highly Uniform Mesoporous Sub-Micrometric Capsules of Silicon Oxycarbide and Silica,” Chem. Mater., 19, 3096-3098, 2007 22. J. Zhao, X. Zhao, Y. Liu, N. Tao, H. Bala, H. Zhang, Y. Jiang, K. Yu, Y. Zhu, Y. Deng, H. Yang, Z. Wang, “Ti-Si oxide composite spheres with hollow interior fabricated by emulsion/interface technique employing Ti ionic liquid,” Mater. Chem. Phys., 93, 487-494, 2005. 23. H. Xu, W. Wang, “Template Synthesis of Multishelled Cu2O Hollow Spheres with a Single-Crystalline Shell Wall,” Angew. Chem. Int. Ed., 46, 1489-1492, 2007 24. Q. Peng, Y. Dong, Y. Li, “ZnSe Semiconductor Hollow Microspheres,” Angew. Chem. Int. Ed., 42, 3027-3030, 2003 25. L. J. Mao, C. Y. Liu, J. Liab, “ Template-free synthesis of VOx hierarchical hollow spheres,” J. Mater. Chem., 18, 1640-1643, 2008 26. Y. Wang, L. Cai, Y. Xia, “Monodisperse Spherical Colloids of Pb and Their Use as Chemical Templates to Produce Hollow Particles,” Adv. Mater., 17, 473-477, 2005 27. H. Qian, G. Lin, Y. Zhang, P. Gunawan, R. Xu, “A new approach to synthesize uniform metal oxide hollow nanospheres via controlled precipitation,” Nanotechnology, 18, 355602(6pp), 2007 28. Y. Yang, Y. Chu, Y. Zhang, F. Yang, J. Liu, “ Polystyrene-ZnO core-shell microspheres and hollow ZnO structures synthesized with the sulfonated polystyrene templates,” J. Solid State Chem., 179, 470-475, 2006 29. Z. Deng, M. Chen, G. Gu, L. Wu, “A Facile Method to Fabricate ZnO Hollow Spheres and Their Photocatalytic Property,” J. Phys. Chem. B, 112, 16-22, 2008 30. Y. Zhang, E. W. Shi, Z. Z. Chen, B. Xiao, “Fabrication of ZnO hollow nanospheres and “jingle bell” shaped nanospheres,” Mater. Lett., 62, 1435-1437, 2008 31. Y. Zhanga, E. W. Shia, Z. Z. Chena,“Synthesis and magnetic properties of Mn-doped ZnO hollow nanospheres,” J. Cryst. Growth, 310, 2928-2933, 2008 32. Y. Gao, A. D. Li, Z. B. Gu, Q. J. Wang, Y. Zhang, D. Wu, Y. F. Chen, N. B. Ming, “ Fabrication and optical properties of two-dimensional ZnO hollow half-shell arrays,” Appl. Phys. Lett., 91, 031910, 2007 33. H. P. Cong, S. H. Yu, “Hybrid ZnO-Dye Hollow Spheres with New Optical Properties from a Self-Assembly Process Based on Evans Blue Dye and Cetyltrimethylammonium Bromide,”Adv. Funct. Mater., 17, 1814-1820, 2007 34. L. Li, H. Yang, G. Qi, J. Maa, X. Xie, H, Zhao, F. Gao, “Synthesis and photoluminescence of hollow microspheres constructed with ZnO nanorods by H2 bubble templates,” Chem. Phys. Lett., 455, 93-97, 2008 35. Z. Chen, L. Gao, “ A New Route toward ZnO Hollow Spheres by a Base-Erosion Mechanism,” Cryst. Growth Des., 8, 460-464, 2008 36. X. L. Zhang, R. Qiao, J. C. Kim, Y. S. Kang, “Inorganic Cluster Synthesis and Characterization of Transition-Metal-Doped ZnO Hollow Spheres,” Cryst. Growth Des., 8, 2609-2613, 2008 37. H. Zhou, T. Fan, D. Zhang, “ Hydrothermal synthesis of ZnO hollow spheres using spherobacterium as biotemplates,” Microporous Mesoporous Mater., 100, 322-327, 2007 38. A. Umar, Y. B. Hahn, “Large-quantity synthesis of ZnO hollow objects by thermal evaporation: Growth mechanism, structural and optical properties,” Appl. Surf. Sci., 254, 3339-3346, 2008 39. P. X. Gao, Z. L. Wang, “ Mesoporous Polyhedral Cages and Shells Formed by Textured Self-Assembly of ZnO Nanocrystals” J. Am. Chem. Soc., 125, 11299-11305, 2003 40. G. Shen, Y. Bando, C. J. Lee, “ Synthesis and Evolution of Novel Hollow ZnO Urchins by a Simple Thermal Evaporation Process,” J. Phys. Chem. B., 109, 10578-10583, 2005 41. Y. Zhang, W. Zhang, H Zheng, “ Fabrication and photoluminescence properties of ZnO:Zn hollow microspheres,” Scripta Mater., 57, 313-316, 2007 42. B. Liu, H. C. Zeng, “Fabrication of ZnO “Dandelions” via a Modified Kirkendall Process,” J. Am. Chem. Soc., 126, 16744-16746, 2004 43. 陳青偉,“磁性雙水磷酸氫鈣之製備分析及作為癌症熱療之研究”,國立台北科技大學碩士論文,2008。 44. M. A. Verges1, R. Costo, A. G. Roca, J. F. Marco, G. F. Goya, C. J. Serna, M. P. Morales, “Uniform and water stable magnetite nanoparticles with diameters around the monodomain-multidomain limit,”J. Phys. D: Appl. Phys., 41, 134003 (10pp), 2008 45. 王彥文,“以植入前驅物於膠體模板方式合成單一分散中空氧化鋁暨其他無機物微球之研究,”國立中興大學碩士論文, (2008) 46. K. Kitano, N. Kuwamura, R. Tanaka, R. Santo, T. Nishioka, A. Ichimura, I. Kinoshita, “ Synthesis and characterization of tris(2-pyridylthio)methanido Zn complex with a Zn-C bond and DFT calculation of its one-electron oxidized speciesw,” Chem. Commun., 1314-1316, 2008 47. L. Li, H. Song, X. Chen, “Enhancement of thermal stability of poly(divinylbenzene) microspheres,” Mater. Lett., 62, 179-182, 2008. 48. D. L. A. Faria, S. V. Silva, M. T. Oliveira, “ Raman Microspectroscopy of Some Iron Oxides and Oxyhydroxides,” J. Raman Spectrosc., 28, 873-878, 1997 49. A. Zoppi, C. Lofrumento, E. M. Castellucci, Ph. Sciau, “ Al-for-Fe substitution in hematite: the effect of low Al concentrations in the Raman spectrum of Fe2O3,” J. Raman Spectrosc., 39, 40-46, 2008 50. I. V. Chernyshova, M. F. Hochella Jr, and A. S. Madden, “Size-dependent structural transformations of hematite nanoparticles. 1. Phase transition,” Phys. Chem. Chem. Phys., 9, 1736-1750, 2007 51. Q. L. Ye, Y. Kozuka, H. Yoshikawa, K. Awaga, S. Bandow, S. Iijima, “Effects of the unique shape of submicron magnetite hollow spheres on magnetic properties and domain states,” Phys. Rev. B, 75, 224404(5pp), 2007 52. J. Motoyama, T. Hakata, R. Kato, N. Yamashita, T. Morino, T. Kobayashi, H, Honda, “ Size dependent heat generation of magnetite nanoparticles under AC magnetic field for cancer therapy,” BioMagnetic Research and Technology, 6:4, 2008 53. V. S. Kalambur, B. Han, B. E Hammer, T. W. Shield, J. C. Bischof, “In vitro characterization of movement, heating and visualization of magnetic nanoparticles for biomedical applications,” Nanotechnology, 16, 1221-1233, 2005
摘要: 本研究以C2Cl4為反應溶劑,搭配金屬氯化物,對尺寸單一分散之有機模板進行表面改質,再以鍛燒移除模板,合成出中空微球。合成方式是將前驅物藉由植入硬質模板表層,形成核殼結構微球,有別於一般以披覆式合成中空球結構的方法。本研究中吾人將實驗分為兩個部份,首先合成ZnO中空球並探討金屬前驅體之植入機制,以及鍛燒溫度對球體結構之影響;第二部分則合成Pt/Fe2O3複合殼層微球,探討改變Pt前驅物濃度,Pt奈米顆粒於Fe2O3擔體殼層之佈植比例,與對球體微結構之影響。 在第一部份研究中,吾人將改質之有機模板(未鍛燒),以歐傑電子能譜儀(AES)進行縱深分析。結果顯示Zn前驅物是以植入之方式,與有機模板結合;以傅立葉轉換紅外線光譜儀(FTIR),對改質前與後之有機模板進行官能基分析,結果發現-CH=CH2、=CH2官能基之相對強度有所改變。吾人藉此推測前驅物與模板結合與植入過程之可能反應機制。最後分別利用熱重與熱差分析儀(TG/DSC)、場發射掃描式電子顯微鏡(FE-SEM)、穿透式電子顯微鏡(TEM),探討有機模板之熱裂解過程,並觀測在不同鍛燒溫度,對球體微結構之影響。觀測結果顯示,氧化鋅殼層於模板移除溫度前已生成,雖然高溫有助於模板移除以及殼層生成,但溫度過高,反而會造成球體崩塌。 在第二部份之Pt/Fe2O3複合殼層空心球的研究,吾人選用FeCl3以及H2PtCl6作為Fe2O3擔體殼層與活性金屬Pt之前驅物,並藉由改變Pt前驅物的含量,探討對其結構與組成的影響。首先以感應耦合電漿原子放射光譜儀(ICP-MS)對改質有機模板(未鍛燒),進行前驅物植入之元素含量分析。比較改質前驅物,與改質於模板上(Fe/Pt)莫爾比可發現,前驅物於合成反應過程中,存在著競爭植入的現象。接下來分別利用FE-SEM、TEM、BET對鍛燒處理後所得球體進行分析,結果顯示球體表面形貌、中空結構、孔徑分佈並不隨Pt佈植量的提高而有改變,但X光繞射分析儀(XRD)量測發現擔體晶粒尺寸與結晶度,隨Pt佈植量之提高而下降。最後將不同Pt佈植比例中空微球於交流電場施加環境,比較其熱性質之差異,結果發現Pt佈植量的提高,會導致釋放熱能效率下降。
A facile process has been developed to fabricate hollow spheres with nanoporous shell structure. The process used metal chloride as a precursor and polymeric hard template as the starting materials, together with tetrachloroethylene (C2Cl4) as a solvent. The hollow spheres were obtained after removal of the polymeric template by thermal pyrolysis. The process involves implantation of the precursor into the template surface to become a core-shell structure, different from those reported in the literature. In this work, the experiment was divided into two parts. First, we prepared ZnO hollow spheres, proposed a model to explain the implantation mechanism, and examined effect of calcinations temperature on hollow structure. Second, Pt/Fe2O3 composite hollow spheres were synthesized. Effect of Pt loading on microstructure of the composite particles was examined In the first part, ZnCl2 was used as the precursor. From ESCA/Auger depth analysis, Zn species penetrated to template surface for the implantation process. FTIR observed that -CH=CH2 absorption intensity becomes stronger but =CH2 absorption intensity gets weaker after the implantation. We inferred that the implantation maybe caused by tetrachloroethylene decomposition and Zn precursor recomposed to replace the original organic group on template surface. We also found that calcination temperature plays an important factor in synthesis of the hollow sphere shell. TG/DSC showed the template removal process. From SEM/TEM examination, the ZnO shell crystallized before the template had vanished, although high temperature seemed helpful to template core pyrolysis and formation of hollow spheres shell atructure. As temperature raised further to 700 oC would help the core removal, the spheres shell would collapse. In the second section, we chose FeCl3 and H2PtCl6 as the precursor for the synthesis of Pt/Fe2O3 composite hollow spheres. The H2PtCl6 concentration was adjusted in order to study the effect of Pt loading on shell structure of the composite hollow spheres. From ICP-MS analysis, we found out that the precursors would compete for the implantation. FE-SEM, TEM, BET were also used to analyze the different Pt loadings on the composite hollow spheres. XRD revealed that the Fe2O3 grain size and crystallinity decrease as the Pt loading increased. Finally, composite hollow spheres with different Pt loadings were prepared into electrorheological fluids and subjected to alternating magnetic field. Result revealed that heat transform efficiency descended when the composite hollow spheres with a higher Pt loading.
URI: http://hdl.handle.net/11455/10677
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.