Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10686
標題: 以基板轉移技術進行氮化銦鎵共振腔發光二極體之研製與特性研究
Fabrication and Characterization of InGaN Resonant-Cavity Light-Emitting Diodes Prepared by Wafer Transfer Technologies
作者: 黃詩詠
Huang, Shih-Yung
關鍵字: GaN
氮化鎵
resonant-cavity
light-emitting diodes
laser lift-off
ion-implantation
共振腔
發光二極體
雷射剝離
離子佈植
出版社: 材料科學與工程學系所
引用: [1] S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai, “Superbright green InGaN single-quantum-well-structure light-emitting diodes,” Jpn. J. Appl. Phys., vol. 34, pp. 1332-1335, 1995. [2] T. Mukai, H. Narimatsu, and S. Nakamura, “Amber InGaN-based light-emitting diodes operable at high ambient temperatures,” Jpn. J. Appl. Phys., vol. 37, pp. 479-481, 1998. [3] S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. F. Chen, and J. M. Tsai, “400-nm InGaN-GaN and InGaN-AlGaN multiquantum well light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron., vol. 8, pp.744-748, 2002. [4] C. H. Kuo, S. J. Chang, Y. K. Su, J. F. Chen, L. W. Wu, J. K. Sheu, C. H. Chen, and G. C. Chi, “InGaN/GaN light emitting diodes activated in O ambient,” IEEE Electron Device Lett., vol. 23, pp. 240-242, 2002. [5] E. F. Schubert, Y. H. Wang, A. Y. Cho, L. W. Tu, and G. J. Zydzik, “Resonant cavity light-emitting diode,” Appl. Phys. Lett., vol. 60, pp. 921-923, 1992. [6] F. Calle, F. B. Naranjo, S. Fernández, M. A. Sánchez-García, E. Calleja, and E. Muñoz, “Nitride RCLEDs grown by MBE for POF applications,” Phys. Stat. Sol. (a), vol. 192, pp. 277-285, 2002. [7] T. Someya, and Y. Arakawa, “Highly reflective GaN/Al GaN quarter-wave reflectors grown by metal organic chemical vapor deposition,” Appl. Phys. Lett., vol. 73, pp. 3653-3655, 1998. [8] A. M. Green, D. G. Gevaux, C. Roberts, and C. C. Phillips, “Resonant-cavity-enhanced photodetectors and LEDs in the mid-infrared,” Phys. E, vol. 20, pp. 531-535, 2004. [9] A. M. Vredenberg, N. E. J. Hunt, E. F. Schubert, D. C. Jacobsen, J. M. Poate, and G. J. Zydzik, “Controlled atomic spontaneous emission from Er3+ in a transparent Si/SiO2 microcavity,” Phys. Rev. Lett., vol. 71, pp. 517-520, 1993. [10] N. E. J. Hunt, E. F. Schubert, R. A. Logan, and G. J. Zydzik, “Enhanced spectral power density and reduced linewidth at 1.3 µm in an InGaAsP quantum well resonant-cavity light-emitting diode,” Appl. Phys. Lett., vol. 61, pp. 2287-2289, 1992. [11] H. De Neve, J. Blondelle, R. Baets, P. Deemester, P. Van Daele, and G. Borghs, “High efficiency planar microcavity LED''s: comparison of design and experiment,” IEEE Photonics Technol. Lett., vol. 7, pp. 287-289, 1995. [12] M. Diagne, Y. He, H. Zhou, E. Makarona, A. V. Nurmikko, J. Han, T. Takeuchi, and M. Krames, “A high injection resonant cavity violet light emitting diode incorporating (Al,Ga)N distributed Bragg reflector,” Phys. Stat. Sol. (a), vol. 188, pp. 105-108, 2001. [13] R. Wirth, C. Kamutsch, S. Kugler, and K. Streubel, “High-efficiency resonant-cavity LEDs emitting at 650 nm,” IEEE Photon Technol. Lett., vol. 13, pp. 421-423, 2001. [14] M. A. Khan, J. N. Kuznia, J. M. Van Hove, and D. T. Olson, " Reflective filters based on single-crystal GaN/AlxGa1−xN multilayers deposited using low-pressure metalorganic chemical vapor deposition,” Appl. Phys. Lett., vol. 59, pp. 1449-1451, 1991. [15] M. Arita, M. Nishioka, and Y. Arakawa, “InGaN vertical microcavity LEDs with a Si-Doped AlGaN/GaN distributed Bragg reflector,” Phys. Stat. Sol. (a), vol. 194, pp. 403-406, 2002. [16] I. L. Krestnikov, W. V. Lundin, A. V. Sakharov, V. A. Semenov, A. S. Usikov, A. F. Tsatsul'nikov, Zh. I. Alferov, N. N. Ledentsov, A. Hoffmann, and D. Bimberg, “Room-temperature photopumped InGaN/GaN/AlGaN vertical-cavity surface-emitting laser,” Appl. Phys. Lett., vol. 75, pp. 1192-1194, 1999. [17] T. Someya, R. Werner, A. Forchel, M. Catalano, R. Cingolani, and Y. Arakawa, “Room temperature lasing at blue wavelengths in gallium nitride microcavities,” Science, vol. 285, pp. 1905-1906, 1999. [18] K. E. Waldrip, J. Han, J. J. Figiel, H. Zhou, E. Makarona, and A. V. Nurmikko, “Stress engineering during metalorganic chemical vapor deposition of AlGaN/GaN distributed Bragg reflectors,” Appl. Phys. Lett., vol. 78, pp. 3205-3207, 2001. [19] X. H. Zhang, S. J. Chua, W. Liu, L. S. Wang, A. M. Yong, and S. Y. Chow, “Crack-free fully epitaxial nitride microcavity with AlGaN/GaN distributed Bragg reflectors and InGaN/GaN quantum wells,” Appl. Phys. Lett., vol. 88, pp. 191111-1~191111-3, 2006. [20] H. M. Ng, T. D. Moustakas, and S. N. G. Chu, “High reflectivity and broad bandwidth AlNÕGaN distributed Bragg reflectors grown by molecular-beam epitaxy,“ Appl. Phys. Lett., vol. 76, pp. 2818-2820, 2000. [21] H. H. Yao, C. F. Lin, H. C. Kuo, and S. C. Wang, “MOCVD growth of AlN/GaN DBR structures under various ambient conditions,” J. Cryst. Growth, vol. 262, pp. 151-156, 2004. [22] G. S. Huang, T. C. Lu, H. H. Yao, H. C. Kuo, S. C. Wang, Chih-Wei Lin, and Li Chang, “Crack-free GaN/AlN distributed Bragg reflectors incorporated with GaN/AlN superlattices grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett., vol. 88, pp. 061904-1~061904-3, 2006. [23] T. C. Lu, C. C. Kao, H. C. Kuo, G. S. Huang, and S. C. Wang, “CW lasing of current injection blue GaN-based vertical cavity surface emitting laser,” Appl. Phys. Lett., vol. 92, pp. 141102-1~141102-3, 2008. [24] L. A. Coldren, S. P. DenBaars, E. L. Hu, T. Margalith, O. Buchinsky, D. A. Cohen, A. R. Stonas, and A. C. Abare, “Blue and green InGaN VCSEL technology,” Final Report 1998-99 for MICRO Project 98-034 Industrial Sponsor: Hewlett Packard. [25] B. S. Tan, S. Yuan, and X. J. Kang, “Performance enhancement of InGaN light-emitting diodes by laser lift-off and transfer from sapphire to copper substrate, “ Appl. Phys. Lett., vol. 84, pp. 2757-2759, 2004. [26] W. S. Wong, T. Sands, and N. W. Cheung, “Damage-free separation of GaN thin films from sapphire substrates,“ Appl. Phys. Lett., vol. 72, pp. 599-601, 1998. [27] C. F. Chu, F. I. Lai, J. T. Chu, C. C. Yu, C. F. Lin, H. C. Kuo, and S. C. Wang, “Study of GaN light-emitting diodes fabricated by laser lift-off technique, “J. Appl. Phys., vol. 95, pp. 3916-3922, 2004. [28] Y. K. Song, H. Zhou, M. Diagne, A. V. Nurmikko, R. P. Schneider, Jr., C. P. Kuo, M. R. Krames, R. S. Kern, C. Carter-Coman, and F. A. Kish, “A quasicontinuous wave, optically pumped violet vertical cavity surface emitting laser,” Appl. Phys. Lett., vol. 76, pp. 1662-1664, 2000. [29] R. W. Martin, P. R. Edwards, H. S. Kim, K. S. Kim, T. Kim, I. M. Watson, M. D. Dawson, Y. Cho, T. Sands, and N. W. Cheung, “Optical spectroscopy of GaN microcavities with thicknesses controlled using a plasma etchback,” Appl. Phys. Lett., vol. 79, pp. 3029-3031, 2001. [30] F. Rizzi, P. R. Edwards, K. Bejtka, F. Semond, X. N. Kang, G. Y. Zhang, E. Gu, M. D. Dawson, I. M. Watson, and R. W. Martin, “(In,Ga)N/GaN microcavities with double dielectric mirrors fabricated by selective removal of an (Al,In)N sacrificial layer,“ Appl. Phys. Lett., vol. 90, pp. 111112-1~111112-3, 2007. [31] T. Tawara, H. Gotoh, T. Akasaka, N. Kobayashi, and T. Saitoh, “Low-threshold lasing of InGaN vertical-cavity surface-emitting lasers with dielectric distributed Bragg reflectors,” Appl. Phys. Lett., vol. 83, pp. 830-832, 2003. [32] T. K. Kim, S. S. Yang, J. K. Hong, and G. M. Yang, “GaN microcavity structure with dielectric distributed Bragg reflectors fabricated by using a wet-chemical etching of a (111) Si substrate,” Appl. Phys. Lett., vol. 89, pp. 041129-1~041129-3, 2006. [33] Y.-K. Song, M. Diagne, H. Zhou, A. V. Nurmikko, C. Carter-Coman, R. S. Kern, F. A. Kish, and M. R. Krames, ”A vertical injection blue light emitting diode in substrate separated InGaN heterostructures,” Appl. Phys. Lett., vol. 74, pp. 3720-3722, 1999. [34] Y. K. Song, M. Diagne, H. Zhou, A. V. Nurmikko, and R. P. Schneider, JR., “A blue resonant cavity light emitting diode,” Phys. Stat. Sol. (a), vol. 180, pp. 33-35, 2000. [35] F. B. Naranjo, S. Fernández, M. A. Sánchez-García, F. Calle, and E. Calleja, “Resonant-cavity InGaN multiple-quantum-well green light-emitting diode grown by molecular-beam epitaxy,” Appl. Phys. Lett., vol. 80, pp. 2198-2200, 2002. [36] P. M. Pattison, R. Sharma, A. David, I. Waki, C. Weisbuch, and S. Nakamura, “Gallium nitride based micro-cavity light emitting diodes emitting at 498 nm,” Phys. Stat. Sol. (a), vol. 203, pp. 1783-1786, 2006. [37] S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett., vol. 64, pp. 1687-1689, 1994. [38] Y. K. Song, H. Zhou, M. Diagne, I. Ozden, A. Vertikov, A. V. Nurmikko, C. Carter-Coman, R. S. Kern, F. A. Kish, and M. R. Krames, “A vertical cavity light emitting InGaN quantum well heterostructure,” Appl. Phys. Lett., vol. 74, pp. 3441-3443, 1999. [39] Benisty, H. de Neve, and C. Weisbuch, “Impact of planar microcavity effects on light extraction-Part I: basic concepts and analytical trends,” IEEE J. Quantum Electron., vol. 34, pp. 1612-1631, Sep. 1998. [40] B. Roycroft, M. Akhter, P. Maaskant, P. de Mierry, S. Fernández, F. B. Naranjo, E. Calleja, T. McCormack, and B. Corbett, “Experimental characterisation of GaN-based resonant cavity light emitting diodes,” Phys. Stat. Sol. (a), vol. 192, pp. 97-102, 2002. [41] F. Natali, D. Byrne, A. Dussaigne, N. Grandjean, and J. Massies, “High-Al-content crack-free AlGaN/GaN Bragg mirrors grown by molecular-beam epitaxy,” Appl. Phys. Lett., vol. 82, pp. 499-501, 2003. [42] P. de Mierry, J. M. Bethoux, H. P. D. Schenk, M. Vaille, E. Feltin, B. Beaumont, M. Leroux, S. Dalmasso, and P. Gibart, “Vertical cavity InGaN LEDs grown by MOVPE,” Phys. Stat. Sol. (a), vol. 192, pp. 335-340, 2002. [43] W. S. Wong, T. Sands, N. W. Cheung, M. Kneissl, D. P. Bour, P. Mei, L. T. Romano, and N. M. Johnson, “Fabrication of thin-film InGaN light-emitting diode membranes by laser lift-off,” Appl. Phys. Lett., vol. 75, pp. 1360-1362, 1999. [44] P. R. Tavernier, and D. R. Clarke, “Mechanics of laser-assisted debonding of films,” J. Appl. Phys., vol. 89, pp. 1527-1536, 2001. [45] C. F. Chu, F. I. Lai, J. T. Chu, C. C. Yu, C. F. Lin, H. C. Kuo, and S. C. Wang, “Study of GaN light-emitting diodes fabricated by laser lift-off technique,” J. Appl. Phys., vol. 95, pp. 3916-3922, 2004. [46] P. Perlin, L. Mattos, N. A. Shapiro, J. Kruger, W. S. Wong, T. Sands, N. W. Cheung, and E. R. Weber, “Reduction of the energy gap pressure coefficient of GaN due to the constraining presence of the sapphire substrate,” J. Appl. Phys., vol. 85, pp. 2385-2389, 1999. [47] W. S. Wong, Y. Cho, E. R. Weber, T. Sands, K. M. Yu, J. Krüger, A. B. Wengrow, and N. W. Cheung, “Structural and optical quality of GaN/metal/Si heterostructures fabricated by excimer laser lift-off,” Appl. Phys. Lett., vol. 75, pp. 1887-1889, 1999. [48] I. Schnitzer, E. Yablonovitch, C. Caneau, and T. J. Gmitter, “Ultrahigh spontaneous emission quantum efficiency, 99.7% internally and 72% externally, from AlGaAs/GaAs/AlGaAs double heterostructures,” Appl. Phys. Lett., vol. 62, pp. 131-133, 1993. [49] P. Maaskant, M. Akhter, B. Roycroft, E. O'Carrol, and B. Corbett, “Fabrication of GaN-based resonant cavity LEDs,” Phys. Stat. Sol. (a), vol. 192, pp. 348-353, 2002. [50] G. Björk, S. Machida, Y. Yamamoto, and K. Igeta, “Modification of spontaneous emission rate in planar dielectric microcavity structures,” Phys. Rev. A., vol. 44, pp. 669-681, 1991. [51] H. Benisty, H. D. Neve, and C. Weisbuch, “Impact of planar microcavity effects on light extraction-Part II: Selected exact simulations and role of photon recycling,” IEEE J. Quantum Electron., vol. 34, pp. 1632-1643, 1998. [52] Feng Z C ed., Ⅲ-Nitride Devices and Nanoengineering 1st Imperial College Press, London, UK, 2008. [53] Y. J. Lee, S. Y. Lin, C. H. Chiu, T. C. Lu, H. C. Kuo, S. C. Wang , S. Chhajed, J .K. Kim, and E. F. Schubert, “High output power density from GaN-based two-dimensional nanorod light-emitting diode arrays,” Appl. Phys. Lett., vol. 94, pp. 141111-1~141111-3, 2009. [54] D. S. Liu, T. W. Lin, B. W. Huang, F. S. Juang, P. H. Lei, and C. Z. Hu, “Light-extraction enhancement in GaN-based light-emitting diodes using grade-refractive-index amorphous titanium oxide films with porous structures,” Appl. Phys. Lett., vol. 94, pp. 143502-1~143502-3, 2009. [55] A. J. Shaw, A. L. Bradley, J. F. Donegan, and J. G. Lunney, “GaN resonant cavity light-emitting diodes for plastic optical fiber applications,” IEEE Photon. Technol. Lett., vol. 16, pp. 2006-2008, 2004. [56] W. W. Chow, K. D. Choquette, M. H. Crawford, K. L. Lear, and H. G. Ronald , “Design, fabrication, and performance of infrared and visible vertical-cavity surface-emitting lasers,” IEEE J. Quantum. Electron., vol. 33, pp. 1810-1824, 1997. [57] Y. K. Song, M. Diagne, H. Zhou, A. V. Nurmikko, R. P. Schneider Jr., and T. Takeuchi, “Resonant cavity InGaN quantum well blue light-emitting diodes,” Appl. Phys. Lett., vol. 77, pp. 1744-1746, 2000. [58] P. H. Lei, and C. D. Yang, “650nm Resonant-cavity light-emitting diodes with dielectric distributed Bragg reflectors,” Solid-State Electron., vol. 52, pp. 227-232, 2008. [59] A. Castiglia, D. Simeonov, H. J. Buehlmann, J. F. Carlin, E. Feltin, J. Dorsaz, R. Butté, and N. Grandjean, “Efficient current injection scheme for nitride vertical cavity surface emitting lasers,” Appl. Phys. Lett., vol. 90, pp. 033514-1~033514-3, 2007. [60] L. B. Chang, D. H. Yeh, L. Z. Hsieh, and S. H. Zeng, “Enhanced modulation rate in platinum-diffused resonant-cavity light-emitting diodes,” J. Appl. Phys., vol. 98, pp. 093504-1~093504-5, 2005. [61] G. T. Dang, R. Mehandru, B. Luo, F. Ren, W. S. Hobson, J. Lopata, M. Tayahi, S N. G. Chu, S. J. Pearton, W. Chang, and H. Shen, “Fabrication and characteristics of high-speed implant-confined index-guided lateral-current 850-nm vertical cavity surface-emitting Lasers,” J. Lightwave Technol., vol. 21, pp. 1020-1031, 2003. [62] A. Wiatrowski, B. Boratynski, S. Prucnal, Z. Synowiec, and J. Zuk, ” Proton implant isolation in GaN,” Vacuum, vol. 78, pp. 463-466, 2005. [63] D. P. James, D. D. Michael, and B. G. Peter, Silicon VLSI technology: fundamentals, practice, and modeling 1st Prentice Hall, INC., Taipei, Taiwan, Republic of China, 2002. [64] I. Radu, R. Singh, R. Scholz, U. Gösele, S. Christiansen, G. Brüderl, C. Eichler, and V. Härle, “Formation of nanovoids in high-dose hydrogen implanted GaN,” Appl. Phys. Lett. vol. 89, pp. 031912-1~031912-2, 2006. [65] M. A. Reshchikov, and H. Morkoç, “Luminescence properties of defects in GaN,” J. Appl. Phys., vol. 97, pp. 061301-1~061301-95, 2005. [66] J. K. Sheu, M. L. Lee, C. J. Tun, C. J. Kao, L. S. Yeh, S. J. Chang, and G. C. Chi, “Characterization of Si implants in p-type GaN,” IEEE J. Sel. Top Quant. Electron., vol. 8, pp. 767-772, 2002. [67] B. D. Cullity, and S. R. Stock, Elements of X-Ray Diffraction 3rd ed., pp. 174-177, Prentice-Hall Inc., New Jersey, USA, 2001. [68] T. D. Moustakas, T. Lei, and R. J. Molnar, “Growth of GaN by ECR-assisted MBE,” Physica B, vol. 185, pp. 36-49, 1993. [69] M. M. Dumitrescu, M. J. Saarinen, M. D. Guina, and M. V. Pessa, “High-speed resonant cavity light-emitting diodes at 650 nm,” IEEE J. Sel. Top .Quantum Electron., vol, 8, pp. 219-230, 2002. [70] M. A. Mastro, J. D. Caldwell, R. T. Holm, R. L. Henry, and C. R. Eddy Jr., “Design of gallium nitride resonant cavity light-emitting diodes on Si substrates,” Adv. Mater., vol. 20, pp. 115-118, 2008. [71] R. F. Oulton, J. W. Gray, P. N. Stavrinou, and G. Parry, “Insight into planar microcavity emission as a function of numerical aperture,” Opt. Commun., vol. 195, pp. 327-338, 2001. [72] S. Dhar, T. Kammermeier, A. Ney, L. Pérez, K. H. Ploog, A. Melnikov, and A. D. Wieck, “Ferromagnetism and colossal magnetic moment in Gd-focused ion-beam-implanted GaN,” Appl. Phys. Lett., vol. 89, pp. 062503-1~062503-3, 2006. [73] Y. Shon, Y. H. Kwon, Sh. U. Yuldashev, Y. S. Park, D. J. Fu, D. Y. Kim, H. S. Kim, and T. W. Kang, “Diluted magnetic semiconductor of p-type GaN epilayers implanted with Mn+ ions,” J. Appl. Phys., vol. 93, pp. 1546-1549, 2003. [74] R. H. Birkner, J. Kaiser, W. Elsäßer, and C. Jung, “Resonant-cavity light-emitting diodes: quantum noise and spatial emission characteristics,” Appl. Phys. B, vol. 79, pp. 963-967, 2004. [75] M. Pessa, M. Guina, M. Dumitrescu, I. Hirvonen, M. Saarinen, L. Toikkanen, and N. Xiang, “Resonant cavity light emitting diode for a polymer optical fiber system,” Semicond. Sci. Technol., vol. 17, pp. R1-R9, 2002. [76] V. Vilokkinen, P. Sipilä, P. Melanen, M. Saarinen, S. Orsila, M. Dumitrescu, P. Savolainen, M. Toivonen, and M. Pessa, “Resonant cavity light-emitting diodes at 660 and 880 nm,” Mater. Sci. Eng. B., vol. 74, pp. 165-167, 2000. [77] T. Matsuoka, T. Ito, and T. Kaino, “First plastic optical fibre transmission experiment using 520nm LEDs with intensity modulation/direct detection,” Electron. Lett., vol. 36, pp. 1836-1837, 2000. [78] S. J. Chang and C. S. Chang, “AlGaInP-GaInP compressively strained multiquantum-well light-emitting diodes for polymer fiber application,“ IEEE Photon. Technol. Lett., vol. 10, pp. 772-774, 1998. [79] K. Streubel, U. Helin, V. Oskarsson, E. Bäcklin, and Å. Johansson, “High Brightness Visible (660 nm) Resonant-Cavity Light-Emitting Diode,” IEEE Photonics. Technol. Lett., vol. 10, pp. 1685-1687, 1998. [80] Y. C. Lee, C. E. Lee, B. S. Cheng, T. C. Le, H. C. Kuo, S. C. Wang, and S. W. Chiou, “High-Performance 650nm Resonant-Cavity Light-Emitting Diodes for Plastic Optical-Fiber Application,“ Jpn. J. Appl. Phys., vol. 46, pp. 2450-2453, 2007. [81] J. F. Carlin, P. Royo, R. P. Stanley, R. Houdré, J. Spicher, U. Oesterle, and M. Llegems, “Design and characterization of top-emitting microcavity light-emitting diodes,” Semicond. Sci. Technol., vol. 15, pp. 145-154, 2000. [82] C. S. Kim, H. G. Kim, and C. H. Hong, and H. K. Cho, “ Effect of compressive strain relaxation in GaN blue light-emitting iodes with variation of n+-GaN thickness on its device performance,” Appl. Phys. Lett., vol. 87, pp. 013502-1~013502-3, 2005. [83] S. W. Lee, D. C. Oh, H. Goto, J. S. Ha, H. J. Lee, T. Hanada, M. W. Cho, T. Yao, S. K. Hong, H. Y. Lee, S. R. Cho, J. W. Choi, J. H. Choi, J. H. Jang, J. E. Shin, and J. S. Lee, “Origin of forward leakage current in GaN-based light-emitting devices,” Appl. Phys. Lett, vol. 89, pp. 132117-1~132117-3, 2006. [84] E. Fred Schubert, Light-emitting diodes, 1st ed., Chap. 4~5, pp. 79-97., Cambridge University Press, USA, 2003. [85] L. Z. Hsieh, D. H. Yeh, L. B. Chang, T. W. Soong, and P. Y. Kuei, “Temperature characteristics of high modulation rate platinum-diffused AlGaInP resonant-cavity light-emitting diodes,” Jpn. J. Appl. Phys., vol. 45, pp. 6911-6913, 2006. [86] E. F. Schubert, N. E. J. Hunt, R. J. Malik, M. Micovic, and D. L. Miller, “Temperature and modulation characteristics of resonant-cavity light-emitting diodes,” J. Lightwave Technol., vol. 14, pp. 1721-1729, July 1996. [87] S. Surendran, J. Pokorný, K. Jurek, E. Bernstein, and P. Malý, “Temperature dependence of the optical energy gap of CdSSe nanocrystals in glass,” Mater. Sci. Eng. B., vol. 104, pp. 54-57, 2003. [88] T. Takamori, A. R. Pratt, and T. Kamijoh, “Temperature dependence of InGaAs/GaAs quantum well microcavity light-emitting diodes,” Appl. Phys. Lett., vol. 74, pp. 3598-3600, 1999. [89] A. R. Pratt, T. Takamori, and T. Kamijoh, “Cavity detuning effects in semiconductor microcavity light emitting diodes,“ J. Appl. Phys., vol. 87, pp. 8243-8250, 2000. [90] Y. Xi, and E. F. Schubert, “Junction-temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method,” Appl. Phys. Lett., vol. 85, pp. 2163-2165, 2004. [91] M. Akhter, P. Maaskant, B. Roycroft, B. Corbett, P. de Mierry, B. Beaumont, and K. Panzer, “200 Mbit/s data transmission through l00m of plastic optical fibre with nitride LEDs,” Electron. Lett., vol. 38, pp. 1457-1458, 2002. [92] J. Park and C. C. Lee, “An Electrical Model With Junction Temperature for Light-Emitting Diodes and the Impact on Conversion Efficiency,” IEEE Electron Device Letters, vol. 26, pp. 308-310, 2005. [93]http://www.allmeasures.com/Formulae/static/formulae /specific_heat_capacity_300K/12.htm [94] S. X. Xua, Y. Lia, and Y.P. Feng, “Some elements in specific heat capacity measurement and numerical simulation of temperature modulated DSC (TMDSC) with R/C network,” Thermochimica Acta, vol. 360, pp. 157-168, 2000. [95] J. W. Shi, H. Y. Huang, J. K. Sheu, C. H. Chen, Y. S. Wu, and W. C. Lai, “The improvement in modulation speed of GaN-based green light-emitting diode (LED) by use of n-type barrier doping for plastic optical fiber (POF) communication,” IEEE Photon. Technol. Lett., vol. 18, pp. 1636-1638, 2006.
摘要: 本論文主要是以基板轉移技術研製並分析氮化銦鎵綠光共振腔發光二極體 (Resonant-Cavity Light-Emitting Diodes; RCLEDs)。我們採用二種下反射鏡一者為介電質分散式布拉格反射鏡(Distributed Bragg Reflectors; DBRs))另一者為金屬鏡面,並與介電質之上反射鏡形成介電質與混和式鏡面之共振腔發光二極體,並比較其特性差異。我們亦採用離子佈值於p-GaN內形成高阻值的電流侷限層,並且藉由分析不同佈值濃度,獲得適用於氮化銦鎵綠光共振腔發光二極體之理想佈值濃度,而且藉此改變其光學特性以提昇元件特性。然後,我們採用基板轉移結合電鍍技術,成功製作出垂直導電氮化銦鎵綠光共振腔發光二極體,進而提升元件光電特性。 在介電質共振腔發光二極體元件特性方面,發光波長在525 nm時,腔模態寬度為5 nm,共振腔的品質因子為105,電激發光共振頻譜的半高寬從48 nm降至35 nm並且獲得穩定的共振波峰,此一共振特性之提升主要來自於良好的共振腔效應所致。在混和式共振腔發光二極體元件特性方面,有相似於介電質共振腔發光二極體之元件特性,然而,當兩種型式之共振腔發光二極體相比較時,由於DBRs相較於金屬鏡面具極少之光吸收率,導致具全介電質共振腔發光二極體有相對較高之光輸出功率。 在離子佈值共振腔發光二極體元件特性方面,我們發現佈值濃度為1014ions/cm2的共振腔發光二極體,有較佳的光指向性與光輸出功率,這結果可以歸因於適當的佈值濃度可以有效控制橫向電流路徑來改善光指向性,並且增加載子覆合機率與改變其光學特性進而提高光輸出功率。 另外,我們採用基板轉移結合電鍍技術,成功的將平行導通共振腔發光二極體(RCLED/sapphire)之共振波峰紅移率從0.14 nm/℃降為垂直導通共振腔發光二極體(RCLED/Cu)之0.03 nm/℃,而光對溫度的衰減率從9 % (RCLED/sapphire)降為3 % (RCLED/Cu),當操作電流為100 mA時,RCLED/Cu有高達155 MHz的頻率響應,並且在長度為100公尺的塑膠光纖,傳輸速率為100 MHz下,獲得較高的雜訊容許量。 經由上列實驗與分析結果,充分顯示出以基板轉移技術成功製作之共振腔發光二極體,除了可以避免磊晶成長之DBRs,成本高、高反射率截止區窄與高反射率鏡面獲得不易之缺點,並且結合電鍍技術成功提昇共振腔發光二極體之元件特性,而且應用於光通訊上也獲得良好的操作性能,此外也結合離子佈值技術,成功獲得指向性與光耦合功率之提昇,我們也更進一步研究獲得適用於氮化銦鎵共振腔發光二極體之理想佈值濃度。因此,以基板轉移技術進行氮化銦鎵共振腔發光二極體之製作,在光通訊、家庭多媒體區域網等應用將深具潛力。
In this dissertation, the fabrication of the InGaN green resonant-cavity light-emitting diodes (RCLEDs) was demonstrated using a combination of wafer bonding and laser lift-off (LLO) techniques. Two types of the RCLED structure were designed and evaluated. In the first one (all dielectric), both the top and bottom mirrors were fabricated using the dielectric distributed Bragg reflectors (DBRs). In the second type (hybrid), the metallic reflector was used as the bottom mirror and the dielectric DBR as the top mirror. For the all dielectric DBR RCLED sample, a cavity mode width of approximately 5 nm (emission peak at 525 nm) was obtained with a quality factor of 105. The full width at half maximum of the electroluminescence (EL) spectrum can be reduced from 48 to 35 nm and a stable EL emission peak is also achieved with less red shift. The improvement of the resonant properties can be attributed to the superior resonant-cavity effect. Although the both types of RCLEDs have similar characteristics, the all dielectric DBR RCLED sample shows the superior light output power because the dielectric DBR has lower light absorbency as compared with that of the metallic mirror. To improve the directionality and output power of the RCLED samples, hydrogen implantation into the p-GaN epitaxial layer to form a current confinement layer with a high resistive region was attempted. The effect of implantation dose (1013 -1015 ions/cm2) on the performance of InGaN green RCLED was investigated. It was found that the 1014 ions/cm2 implanted device shows the best light emission directionality and output power. The results indicate that a tailored implantation concentration can effectively control the lateral current flow path to improve the directionality. This will increase the probability of the carrier recombination and change the optic characteristic, resulting in the enhancement of light output. To further enhance the RCLED performance, the vertical-conducting InGaN green RCLEDs were fabricated using a combination of LLO and copper electroplating techniques. It was found that the RCLED on a copper heat sink can effectively reduce the red shift of peak emission wavelength (i.e. 0.14nm/℃ for RCLED/sapphire sample and 0.03 nm/℃ for RCLED/Cu sample). The light output power of RCLED/Cu and RCLED/sapphire samples decay by 3% and 9% under the ambient temperature from 25 to 85 ℃, respectively. For the RCLED/Cu sample, the superior frequency response of 155 MHz was achieved under a driving current of 100 mA. As compared with the RCLED/sapphire sample, the RCLED/Cu sample also exhibits the higher amount of noise that can be tolerated at a transmission rate of 100MHz for a 100-m long POF (NA=0.5) under a 100-mA driving current. Based on these results, it is confirmed that the conventional problems encountered in fabricating InGaN RCLEDs, i.e. the high cost and growth difficulties of the epitaxial DBRs for wide high-reflectivity stopbands and high-reflectivity DBRs, can be overcome. By combining the electroplating technique, the RCLEDs on copper substrates present the superior operation properties for optic communication applications. Moreover, both the emission directionality and fiber-coupled power can be greatly improved by the ion implantation technique. An optimum implantation concentration for the InGaN RCLED process was also demonstrated. These indicate that the performance of InGaN RCLEDs can be further improved and have high potential for advanced fiber communication applications.
URI: http://hdl.handle.net/11455/10686
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.