Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10705
標題: 鋼筋輕質混凝土之受拉開裂及握裹行為
Tensile Cracking and Bond Behaviors of Reinforced Lightweight Concrete
作者: 吳欣倫
Wu, Hsin-Lun
關鍵字: 輕質混凝土
lightweight concrete
開裂
局部握裹應力
滑移
撓度
cracking
local bond stress
slip
deflection
出版社: 土木工程學系所
引用: [1]Somayaji, S., Civil engineering materials, Prentice Hall, Upper Siddle River, New Jersey, p. 45,2001. [2]Thomas A. Holm and John P., “SPECIFIED DENSITY CONCRETE -A TRANSITION”, Expanded Shale, Clay & Slate Institute (ESCSI) -United States. [3]顏聰,「輕質混凝土的隔熱性能與能源節約」,營建知訊120,臺灣營建研究中心,台北,第81-89頁,1992。 [4]Mindess, S., Young, J.F., and Darwin, D., Concrete, Prentice-Hall, Inc. Englewood Cliffs, New Jersey, 2002. [5]Kokubu, K.,「Lightweight concrete in Japan」,台、中、日、美地區輕質骨材混凝土產業成果研討會論文集,第1-31頁,2006。 [6]“FIP Manual of Lightweight Aggregate Concrete”, 2nd ed., Surry University Press, Glasgow and London, 1983. [7]Chandra, S. and Berntsson, L., Lightweight Aggregate Concrete, Noyes Publications, New York, USA, 2002. [8]TEK 4-1A, Productivity and modular coordination in concrete masonry construction, National Concrete Masonry Association, 2002. [9]顏聰,「土木材料」,中華輕質骨材協會,2006。 [10]顏聰、湯兆緯、王順元、陳豪吉,「水庫淤泥輕質骨材混凝土燒製及應用」,人造輕質骨材及輕質骨材混凝土在兩岸的生產、應用和發展概況研討會論文集,第1-18頁,高雄,2005。 [11]Tang, C.W., “Engineering Properties of Lightweight Concrete Masonry Units Made from Sedimentary Lightweight Aggregates”, Journal of the Chinese Institute of Civil and Hydraulic Engineering, Vol. 22, No. 1, pp. 55-64, 2010. [12]湯兆緯、顏聰、黃中和,「場鑄輕質粒料混凝土中空版梁之施作-以台灣南投石灼巷跨越橋為例」,輕質骨材混凝土,第六期,第9-20頁,2009。 [13]Stramandinoli, R.S.B., and Rovere, H.L.L., “An efficient tension-stiffening model for nonlinear analysis of reinforced concrete members”, Engineering Structures, Vol.30, No.7, pp. 2069-2080, 2008. [14]Fantilli, A.P., and Vallini, P., “Strains in steel bars of reinforced concrete elements subjected to Repeated Loads”, Journal of Strain Analysis for Engineering Design, Vol. 39, No. 5, pp. 447-457, 2004. [15]Zanuy, C., Albajar, L., and Fuente, P. de la, “On the cracking behaviour of the reinforced concrete tension chord under repeated loading”, Materials and Structures, Vol. 43, No. 5, pp. 611-632, 2009. [16]Babu, K.G., “Mean steel strain in reinforced concrete flexural members”, Materials and Structures, Vol. 12, No. 3, pp. 207-214, 1979. [17]fib Bulletin 10. Bond of reinforcement in concrete (state-of-art report). Lausanne, Switzerland: Federation International du Beton (fib), 2000. [18]Gilbert, R.I., and Warner, R.F., “Tension Stiffening in Reinforced Concrete Slabs”, Journal of Structural Engineering-ASCE, Vol. 104, No. 12, pp. 1885-1900, 1978. [19]CEB, CEB-FIP Model Code 1990 (Concrete Structures), Comite Euro-International du Beton, Lausanne, Switzerland, 1993. [20]CEN, Eurocode 2: Design of Concrete Structures, Part 1.1: General Rules and Rules for Buildings (EN 1992-1-1), European Committee for Standardization, Brussels, Belgium, 2004. [21]ACI Committee 318, Building Code Requirements for Structural Concrete (ACI 318-05) and Commentary (318R-05). American Concrete Institute, Michigan, 2005. [22]Oh, B.H., and Kim, S.H., “Realistic Models for Local Bond Stress-Slip of Reinforced Concrete under Repeated Loading”, Journal of Structural Engineering, Vol. 133, No. 2, pp. 216-224, 2007. [23]Balazs, G.L., “Cracking analysis based on slip and bond stresses”, ACI Mater. J., Vol. 90, No. 4, pp. 340-348, 1993. [24]郭鎮海、时旭東,「鋼筋混凝土原理和分析」,第146-162頁,2003。 [25]Piyasena, r., “Crack Spacing, Crack Width and Tension Stiffening Effect in Reinforced Concrete Beams and One-Way Slabs”, Ph.D. thesis, Griffith University, 2002. [26]Soroushian, P.; Mirza, F.; and Alhozaimy, A., “Bonding of confined steel fiber reinforced concrete to deformed bars”, ACI Materials Journal, Vol. 91, No. 2, pp 144-149, 1994. [27]何政、歐晉萍,「鋼筋與混凝土結構非線性分析」,第37-68頁,2007。 [28]Nilson A.H. “Internal Measurement of Bond-slip”, ACI Materials Journal, 1972. [29]Mirza S.M., Houde J. , “Study of Bond Stress-slip Relationships in Reinforced Concrete”, ACI Materials Journal, 1979. [30]Kankam C.K. , “Relationship of Bond Stress, Steel Stress, and Slip in Reinforced Concrete”, Journal of Structural Engineering, 1997. [31]徐有邻,「變形鋼筋-混凝土粘結錨固性能的試驗研究」,北京清華大學土木工程系博士論文,1990。 [32]趙羽习,「鋼筋混凝土粘結性能和耐久性的研究」,浙江大學博士論文,2001。 [33]葉列平、孫海林、陸新征,「高強輕骨料混凝土結構-性能、分析與計算」,2009。 [34]Mathey R.G. , Watstein D. , “Investigation of Bond in Beam and Pull-out Specimens with High-Yield strength Deformed Bars”, ACI Journal, Vol. 62, pp. 1071-1090, 1961. [35]Soroushian P. , Choi K.B. , “Local Bond of Deformed Bars with Different Diameters in Confined Concrete”, ACI Structural Journal, 1989. [36]Ralph A. , Chapman , Surendra P.S. , “Early-Age Bond Strength in Reinforced Concrete”, ACI Materials Journal, pp. 501-510, 1987. [37]Orangun C.O. , Jisra J.o. , Breen J.E. , “A Reevalution of Test Data on Development Length and Splices”, ACI Journal, Vol. 74, pp. 114-122, 1997. [38]中國土木水利工程學會,「混凝土工程設計規範與解說[401-96]」,第五章,第1-5頁,2007。 [39]Hillerborg A. , “Theoretical Basis of a Method to Determine the Fracture Energy G of Concrete”, Materiaux de Construction, Vol.18, No.106, 1985. [40]黃中和,「輕質骨材混凝土樑耐震行為之研究」,國立中興大學土木工程學系博士論文,2005。 [41]ACI 224.2R-92 , “Cracking of Concrete Members in Direct Tension”, 1997. [42]Broms, Bengt B., and Lutz, Leroy A., “Effects of Arrangement of Reinforcement on Crack Width and Spacing of Reinforced Concrete Members”, ACI Journal, Proceedings Vol. 62, No. 11, pp. 1395-1410, 1965. [43]Leonhardt, Fritz, “Crack Control in Concrete Structures,” IABSE Surveys No. S-4/77, International Association for Bridge and Structural Engineering, 1977. [44]Moosecker W , Grasser, E. , “Evaluation of Tension Stiffening in Reinforced Concrete Linear Members”, Final Report, IABSE Colloquium on Advanced Mechanics of Reinforced Concrete, International Association for Bridge and Structural Engineering, 1981. [45]Ghali A. , Faver R. , Elbagry M. , “Concrete Structures: Stress and Deformations”, 2002. [46]Nilson A.H. , Darwin D. , Dolan C.W. , “Design of Concrete Structures”, 2004. [47]Somayaji, S., Civil engineering materials, Prentice Hall, Upper Siddle River, New Jersey, p. 45, 2001. [48]國府勝郎,Lightweight Concrete in JAPAN,臺、中、日、美地區輕質骨材混凝土產業成果研討會論文集,第1-31頁,2006。 [49]三浦律彦、近松竜一、十河茂幸,「高強度フライアッシュ人工骨材を用いた高耐久性の高強度軽量コンクリート」,大林組技術研究所報,No. 62,第77-82頁,2001。 [50]張勇,高性能輕集料的分析與發展,「粉煤灰綜合利用」,No. 4,第39-41頁,2002。 [51]趙順增、楊亞晉、劉立等,「高性能人造輕集料性能的初步研究」,建築砌塊與砌塊建築,No. 1,第36-38頁,2005。 [52]王順元、陳豪吉、郭玉順、黃明君、木村薰,「水庫淤泥研製高性能輕質骨材之初步探討」,台灣混凝土學會2007年混凝土工程研討會,Paper No. 040,2007。 [53]顏聰,「輕質混凝土之工學性質及工程特性」,混凝土工程技術研習會,台灣營建研究中心,1985。 [54]高健章,張阿本,刑志平,「輕質混凝土用粗骨材之研究」,材料科學,第五卷第三號,1973。 [55]許桂銘、黃兆龍,「飛灰輕質骨材性質及其在混凝土上之應用」,營建工程技術,第十三期,1980。 [56]顏聰,曾元一,「人造骨材輕質混凝土之製造及工業化研究」,台灣營建研究中心,1993。 [57]王櫻茂,顏聰,「人造輕質骨材燒製及其物理化學性質之試驗研究」,營建知訊,台灣營建研究中心,第5-16頁,1992。 [58]陳豪吉,「輕質骨材混凝土之產製技術」,水庫淤泥輕質骨材混凝土產製及規範研討會論文集,第51-67頁,2003。 [59]Chen, H.J., Yen, T., Lai, T.P., Huang, Y.L., ”Determination of the dividing strength and its relation to the concrete strength in lightweight aggregate concrete”, Cement & Concrete Composites, Vol. 21, pp. 29-37, 1999. [60]Document BE96-3942/R2, LWAC Material Properties State-of-the-Art, EuroLightCon, December, 1998. [61]Newman, J.B., Properties of Structural Lightweight Concrete in Structural Lightweight Concrete, Ed. JL Clarke, Blackie, Chapman & Hall, London, 19-44, 1993. [62]Zhang, M.H. and Gjorv, O.E., “Properties of high-strength lightweight concrete”, CEB/FIP International Symposium on Structural Lightweight Aggregate Concrete, Sandefjord, Norway, pp. 683-693, 1995. [63]Smeplass, S., Mechanical Properties - Lightweight Concrete. Report 4.5, High Strength Concrete. SP4 - Materials Design, SINTEF, 1992. [64]Chen, H.J., Yen, T., and Chen, K.H., “Evaluating Elastic Modulus of Lightweight Aggregate”, ACI Materials Journal, Vol.100, No.2, pp. 108-113, 2003. [65]Robins, P.J., and Austin, S.A., “Bond of Lightweight Aggregate Concrete Incorporating Condensed Silica Fume, Fly Ash, Silica Fume, slag and Natural Pozzolans”, ACI, Detroit, pp. 941-958, 1986. [66]Mor, A., “Steel-Concrete Bond in High-Strength Lightweight Concrete”, ACI Materials Journal, pp. 76-82 , 1992. [67]Mor, A., “Fatigue Behavior of High-Strength Concrete under Marine Conditions”, PhD thesis, University of California at Berkely , 1987. [68]Weiglere Karl, “Stahlleichtbeton”, Bauverlag GMBH, Wiesbaden und Berlin, pp. 126-147, 1972. [69]Elmer E.R. , “Causes and Control of Cracking in Concrete Reinforced with High-Strength Steel Bars: A Review of Research” , Engineering Publications Office, University of Illinois, 1965. [70]劉得弘,「鋼筋混凝土撓曲樑之疲勞試驗及理論分析」,國立中興大學土木工程學系博士論文,2011。
摘要: 相關規範對於已開裂鋼筋混凝土樑(RC)之撓度計算,雖已適度考慮了混凝土之拉力加勁效應的影響,但皆假設鋼筋與混凝土間無相對滑移產生,因此為有效評估已開裂RC樑之撓度,須研究相鄰裂縫間的鋼筋與混凝土的握裹應力-滑移行為,而輕質骨材混凝土(簡稱LWAC)在受力行為與握裹破壞情形皆與常重混凝土(簡稱NWAC)有所不同。因此本研究藉由局部握裹應力-滑移試驗與拉伸試驗,探討鋼筋輕質混凝土的受拉開裂及握裹行為,並比較使用LWAC與NWAC時,兩者握裹特性之差異。 局部握裹應力-滑移試驗採用三種混凝土強度等級(20 MPa、40 MPa與60 MPa)、三種鋼筋尺寸(#4、#6與#8)與三種粗骨材(常重骨材、水庫淤泥輕質骨材(Type A)與淨水廠汙泥輕質骨材(Type B))之試件進行試驗。由試驗結果得到之握裹應力-滑移關係曲線,探討上述各種參數對於鋼筋與混凝土的握裹性能之影響,並建立各種參數下的局部握裹應力-滑移方程式。試驗結果顯示,當混凝土抗壓強度提升,極限握裹強度隨之提升;而鋼筋竹節高度與直徑之比值(h/db)愈大,其則極限握裹應力愈大;在相同鋼筋尺寸條件下,中低強度LWAC試件之極限握裹應力略低於NWAC者,而高強度LWAC試件之極限握裹應力則明顯大於NWAC者;在相同混凝土抗壓強度下,粗骨材性質接近時,極限握裹應力亦相接近。 另外,對於相鄰裂縫間之鋼筋與混凝土的應力應變分佈、握裹應力分佈與滑移分佈情形,可藉由鋼筋內黏貼應變計之拉伸試驗搭配理論分析推導而得之。拉伸試驗結果顯示,隨鋼筋埋設位置之不同,其握裹應力-滑移關係亦有所不同。藉由局部握裹拉拔試驗求得局部握裹應力-滑移關係,然後確定一個位置函數,兩者的乘積可表達不同鋼筋埋置深度處之握裹應力-滑移關係。 將局部握裹應力-滑移試驗得到之局部握裹應力-滑移方程式及拉伸試驗得到之位置函數引入RC撓曲樑分析模型,並藉由斷面分析與理論之力學推導,即可預測已開裂之RC樑在各載重作用下相對應之中央撓度。
The specification for cracking the deflection of reinforced concrete beam (RC)calculations, have to consider the tension stiffening effect of concrete, but are assuming no slip between the steel and concrete. Therefore, in order to accurately predict the cracking of the RC beam deflection, we need to study the bond stress-slip behavior between adjacent cracks.And the damage situation of the bond of lightweight aggregate concrete(LWAC) and normal weight concrete(NWAC)are different, so this study by the local bond stress-slip test and tensile test of reinforced lightweight concretetension cracking and bond behavior, and compare the use of LWAC and NWAC, the two differences in characteristics between the bond. The parameters of local bond stress-slip tests include three concrete strength(20 MPa, 40 MPa, 60 MPa), three kinds of steel bar size(#4, #6 and #8)and three coarse aggregate(normal weight aggregate, reservoir sludge lightweight aggregate(Type A)and waterworks sludge lightweight aggregate(Type B)). The results of bond stress-slip relationship curve to explore the impact of these various parameters for the performance of the bond between steel and concrete, and the establishment of various parameters of the local bond stress-slip equation. The test results show that when the concrete compressive strength increased, the ultimate bond strength to increase as a result. If the slub height and the diameter ratio(h/db)of the bar is larger, the ultimate bond stress is the greater. In the conditions of the same size of the bar, the ultimate bond stress of low strength LWAC specimen is slightly lower than the low strength NWAC specimen, and the ultimate bond stress of high strength LWAC specimen is significantly greater than the high strength NWAC specimen. In the same compressive strength of concrete, if the performance of the coarse aggregate is similar, the ultimate bond stress are also close. In addition, the steel stress distribution, the steel strain distribution, the concrete stress distribution, the concrete strain distribution, the bond stress distribution and the slip distribution between adjacent cracks which can know by reinforced internal adhesive strain gauges of double pull-out test and the theoretical derivation. The results show that the bond stress-slip relationship differ with position. By local bond stress-slip test to obtain the local bond stress-slip relationship, and then determine a function of position, the product of the two can express the bond stress-slip relationship in different location. A local bond stress-slip of the equation and the location of function to import RC flexural beam analysis model, and by the cross-sectional analysis and the derivation of the theoretical mechanics can predict the cracking of the central deflection of the RC beam in each load.
URI: http://hdl.handle.net/11455/10705
其他識別: U0005-2008201205224200
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2008201205224200
Appears in Collections:土木工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.