Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10709
標題: 類鐵氟龍薄膜電極之製備與特性及其應用於質子交換膜燃料電池之氣體擴散層研究
Fabrication and Characterization of Teflon-like Thin-Film Electrodes and their Applications on Gas Diffusion Layer for Proton Exchange Membrane Fuel Cell
作者: 李志明
Lee, Chih-Ming
關鍵字: Fluorocarbon Plasma
氟碳電漿
Gas Diffusion Layer
Hydrophobic Property
Proton Exchange Membrane Fuel Cell
Teflon-like
氣體擴散層
疏水性質
質子交換膜燃料電池
類鐵氟龍
出版社: 材料科學與工程學系所
引用: Chapter 1 References [1] K. Sopian, W. Daud , Renewable Energy 31 (2006) 719 [2] X. Cheng, B. Yi, M. Han, J. Zhang, Y. Qiao, J. Yu, J. Power Sources 79 (1999)75. [3] Y. H. Pai, F.S. Shieu, “Process Optimization and Characteristics of Nano MEA Materials for PEMFC”, Degree of Doctor of Philosophy, NCHU, (2007) 15. [4] M. S. Wilson, J. A. Valerio, S. Gottesfeld, Electrochim. Acta 40 (1995) 355. [5] G. S. Kumar, M. Raja, S. Parthasarathy, Electrochim. Acta 40 (1995) 285. [6] Z. Qi, A. Kaufman, J. Power Sources 113 (2003) 37. [7] R. O’Hayre, S. J. Lee, S. W. Cha, F. B. Prinz, J. Power Sources 109 (2002) 483. [8] D. Gruber, N. Ponath, J. M¨uller, Electrochim. Acta 51 (2005) 701. [9] S. Litster, G. McLean, J. Power Sources 130 (2004) 61. [10] X. L. Wang, H. M. Zhang, J. L. Zhang, H. F. Xu, Z. Q. Tian, J. Chen, H.X. Zhong, Y.M. Liang, B.L. Yi, Electrochimica Acta 51 (2006) 4909. [11] S. Escribano, J.F. Blachot, J. Eth`eve, A. Morin, R. Mosdale, J. Power Sources 156 (2006) 8. [12] Y. H. Pai, J. H. Ke, H. F. Huang, C. M. Lee, J. M. Zen, F. S. Shieu, J. Power 31 Sources 161 (2006) 275. [13] X. Zhang, Z. Shen, Fuel 81 (2002) 2199. [14] C. Lim, C.Y. Wang, J. Power Sources 113 (2003) 145. [15] G. Karimi, X. Li, J. Power Sources 140 (2005) 1. [16] X. Ren, S. Gottesfeld, J. Electrochem. Soc. 148 (2001) A87. [17] U. Pasaogullari, C.Y. Wang, J. Electrochem. Soc. 151 (2004) A399. [18] N. Djilali, D. Lu, Int. J. Therm. Sci. 41 (2002) 29. [19] J. Chen, T. Matsuura, M. Hori, J. Power Sources 131 (2004) 155. [20] F. Barbir, PEM Fuel Cells: Theory and Practice, Elsevier Academic Press, San Diego, (2005) 93. [21] S. Litster, G. McLean, J. Power Sources 130 (2004) 61. [22] D. Bevers, R. Rogers, M. von Bradke, J. Power Sources 63 (1996) 193. [23] V.A. Paganin, E.A. Ticianelli, E.R. Gonzalez, J. Appl. Electrochem. 26 (1996) 297. [24] L. Giorgi, E. Antolini, A. Pozio, E. Passalacqua, Electrochim. Acta 43 (1998) 3675. [25] C. Lim, C.Y. Wang, Electrochim. Acta 49 (2004) 4149. [26] D.S. Chan, C.C. Wan, J. Power Sources 50 (1994) 163. [27] J. Benziger, J. Nehlsen, D. Blackwell, T. Brennan, J. Itescu, J. Membrane Sci. 261 (2005) 98. [28] W. T. Grubb, Proceedings of the 11th Annual Battery Research and Development 32 Conference, PSC Publications Committee, Red bank, NJ, (1957) 5; U.S. Patent No. 2,913,511 (1959). [29] 衣寶廉,燃料電池-原理與應用,五南圖書出版社,2005 [30] C. Rayment and S. Sherwin, Introduction of Fuel Cell Technology, Department of Aerospace and Mechanical Engineering University of Notre Dame, (2003) [31] J. H. Hirschenhofer, D. E. Stauffer, R. R. Engleman and M. G. Klett, Fuel Cell Handbook 4th Edition, U.S. Department of Commerce, Springfield, VA, (1998) [32] 黃鎮江,燃料電池,全華科技圖書公司,2005 [33] J. Larminie, A. Dicks., Fuel Cell Systems Explained. John Wiley & Sons, Ltd, Chichester, England, (2003). [34] C. K. Wong, Fuel Cell, Chichester Harbour Wildfowlers Asociation, (2003). [35] S. Park, B. N. Popov, Fuel 88 (2009) 2068. [36] J. Xie, D. L. Wood III, D. M. Wayne, T. A. Zawodzinski, P. Atanassov, R. L. Borup, J. Electrochem. Soc. 152 (2005) A104. [37] Y. H. Pai, J. H. Ke, H. F. Huang, C. M. Lee, J. M. Zen, and F. S. Shieu, J. Power Sources 161(2006) 275. [38] D. Barton, J.W. Bradley, D.A. Steele, R.D. Short, J. Phys. Chem. B 103 (1999) 4423. [39] C. Riccardia, R. Barnia, E. Sellib, G. Mazzoneb, M.R. Massafrac, B.Marcandallic, G. Poletti, Appl. Surf. Sci. 211 (2003) 386. [40] M.Nasef , H. Saidi , HM. Nor . ,J Appl Polym Sci ,76(2000)220. [41] M.Nasef , H. Saidi . J Membr, J Appl Polym Sci 5572(2003)1. [42] S. Litster, G..McLean, J Power Sources 130( 2004)61. [43] K. Sopian, W.R. Wan Daud / Renewable Energy 31 (2006) 719 [44] S.Iyuke, A. Mohamad, A. Kadhum , W. Daud , R.Chebbi. J Power Sources, 114(2003)195. [45] L. Xiong, A. Manthiram, Electrochimica Acta 50 (2005) 2323 [46] Z. Hou, B. Yi, H. Yu, Z. Lin, H. Zhang, J.Power Sources 123 (2003) 116 [47] Y. Qiangu, T. Hossein, W. Junxiao, J. Power Sources 158 (2006) 316. [48] H. Y. Li, H. Z. Chen, J. Z. Sun, J. Cao, Z. L. Yang, M. Wang, Macromol Rapid Commun 24(2003) 715. [49] Z.G.. Shao, P. Joghee, I.M. Hsing, J. Memb. Sci. 229 (2004) 43. [50] B.H. Milosavljevic, J.K. Thomas, J. Phys. Chem. B. 107 (2003) 11907. [51] S.Ge, X. Li, I. M. Hsing, Electrochim. Acta 50 (2005) 1909. [52] R.W. Jaszewski, H. Schift, B. Schnyder, A. Schneuwly, P. Groning, Appl. Surf. Sci., 143 (1999) 301. [53] T. Ioroi, T. Oku, K. Yasuda, N. Kumagai, Y. Miyazaki, J. Power Sources 124 (2003) 385. [54] J. Larminie, A. Dicks, Fuel Cell Systems Explained, second edition, John Wiley, New York (2003) 1. [55] J. J. Lin, C. C. Chu, C. C. Chou, F. S. Shieu, Adv. Mater. 17 (2005) 301. [56] A. S. Arico, S. Srinivasan, V. Antonucci, fuel cells 1(2) (2001) 133. [57] K. E. Swider, D. R. Rolison, Langmuir 15(9) (1999) 3302. [58] U. Pasaogullari, C. Y. Wang, J. Electrochem. Soc. 151, (2004) A399. [59] A. Z. Weber, R. M. Darling, J. Newman, J. Electrochem. Soc. 151 (2004) A1715. Chapter 2 References [1] X.L. Wang, H.M. Zhang, J.L. Zhang, H.F. Xu, Z.Q. Tian, J. Chen, H.X. Zhong, Y.M.Liang, B.L. Yi, Electrochim. Acta 51 (2006) 4909. [2] S. Escribano, J.F. Blachot, J. Etheve, A. Morin, R. Mosdale, J. Power Sources 156 (2006) 8. [3] Y.H. Pai, J.H. Ke, C.C. Chou, J.J. Lin, J.M. Zen, F.S. Shieu, J. Power Sources 163 (2006)398. [4] X. Zhang, Z. Shen, Fuel 81 (2002) 2199. [5] C. Lim, C.Y.Wang, J. Power Sources 113 (2003) 145. [6] G. Karimi, X. Li, J. Power Sources 140 (2005) 1. [7] X. Ren, S. Gottesfeld, J. Electrochem. Soc. 148 (2001) A87. [8] U. Pasaogullari, C.Y.Wang, J. Electrochem. Soc. 151 (2004) A399. [9] N. Djilali, D. Lu, Int. J. Therm. Sci. 41 (2002) 29. [10] J. Chen, T. Matsuura, M. Hori, J. Power Sources 131 (2004) 155. [11] F. Barbir, PEM Fuel Cells: Theory and Practice, Elsevier/Academic Press, San Diego (2005) 93. [12] S. Litster, G. McLean, J. Power Sources 130 (2004) 61. [13] D. Bevers, R. Rogers, M. von Bradke, J. Power Sources 63 (1996) 193. [14] V.A. Paganin, E.A. Ticianelli, E.R. Gonzalez, J. Appl. Electrochem. 26 (1996) 297. [15] L. Giorgi, E. Antolini, A. Pozio, E. Passalacqua, Electrochim. Acta 43 (1998) 3675. [16] C. Lim, C.Y.Wang, Electrochim. Acta 49 (2004) 4149. [17] D.S. Chan, C.C.Wan, J. Power Sources 50 (1994) 163. [18] J. Benziger, J. Nehlsen, D. Blackwell, T. Brennan, J. Itescu, J. Membr. Sci. 261 (2005) 98. [19] H.K. Lee, J.H. Park, D.Y. Kim, T.H. Lee, J. Power Sources 131 (2004) 200. [20] R.W. Jaszewski, H. Schift, B. Schnyder, A. Schneuwly, P. Groning, Appl. Surf. Sci.143 (1999) 301. [21] T. Ioroi, T. Oku, K. Yasuda, N. Kumagai, Y. Miyazaki, J. Power Sources 124 (2003)385. [22] D. Barton, J.W. Bradley, D.A. Steele, R.D. Short, J. Phys. Chem. B 103 (1999) 4423. [23] C. Riccardia, R. Barnia, E. Sellib, G. Mazzoneb, M.R. Massafrac, B. Marcandallic, G. Poletti, Appl. Surf. Sci. 211 (2003) 386. [24] R.F. Baddour, R.S. Timmins (Eds.), The Application of Plasmas to Chemical Processing, MIT Press, Cambridge, MA, 1967. [25] A. Grill, Cold Plasma in Materials Fabrication, Institute of Electrical and Electronics Engineers Inc., New York, (1994) 24. [26] S.R. de Miguel, J.I. Vilella, E.L. Jablonski, O.A. Scelza, C. Salinas-Martinez de Lecea, A. Linares-Solano, Appl. Catal. A: Gen. 232 (2002) 237. [27] Y.H. Pai, H.F. Huang, Y.C. Chang, C.C. Chou, F.S. Shieu, J. Power Sources 159 (2006) 878. [28] S.F. Liu, H.S. Chu, P. Yuan, J. Power Sources 161 (2006) 1030. [29] P. Favia, R. d’Agostino, Surf. Coat. Technol. 98 (1998) 1102. [30] D.B. Williams, C.B. Carter, Transmission Electron Microscopy, Plenum Press, New York (1996)351. Chapter 3 References [1] M. Schulze and C. Christenn, Appl. Surf. Sci. 148 (2005) 252. [2] B. Liu, J. P. Rolland, J. M. DeSimone, and A. J. Bard, Anal. Chem. 77(2005) 3013. [3] K. Mitsubayashi, G. Nishio, M. Sawai, T. Saito, H. Kudo, H. Saito, K. Otsuka, T.Noguer, and J. L. Marty, Sens. Actuators B 32 (2008) 130. [4] G. W. McLaughlin, K. Braden, B. Franc, and G. T. A. Kovacs, Sens. Actuators B, 83 (2002) 138. [5] J. Khedkar, I. Negulescu, and E. I. Meletis, Wear 361 (2002) 252. [6] L. H. Sperling, Introduction to Physical Polymer Science, 2nd ed., p. 198, Wiley-Interscience, New York (1991). [7] D. H. Choi, J. Lee, O. Kwon, J. Y. Kim, and K. Kim, J. Power Sources 178 (2008) 677. [8] S. Li, H. Li, X. Wang, Y. Song, Y. Liu, L. Jiang, and D. Zhu, J. Phys. Chem. B 106 (2002) 9274. [9] A. Scanni, A. Valentini, G. Perna, V. Capozzi, and A. Convertino, J. Lumin. 87 (2000) 91. [10] A. Choukourov, Y. Pihosh, V. Stelmashuk, H. Biederman, D. Slavinska, M. Kormunda, and L. Zajickova, Surf. Coat. Technol. 214 (2002) 151–152. [11] D. S. Bodas, A. B. Mandale, and S. A. Gangal, Appl. Surf. Sci. 202 (2005) 245. [12] Y. H. Pai, J. H. Ke, H. F. Huang, C. M. Lee, J. M. Zen, and F. S. Shieu, J. Power Sources 215 (2006) 161. [13] A. Tressaud, E. Durand, and C. Labrugere, J. Fluorine Chem. 1639 (2004) 125. [14] A. Satyaprasad, V. Jain, and S. K. Nema, Appl. Surf. Sci. 5462 (2007) 253. [15] C. T. Hsieh, J. M. Chen, Y. H. Huang, R. R. Kuo, C. T. Li, H. C. Shih, T. S. Lin,and C. F. Wu, J. Vac. Sci. Technol. 113 (2006) B24. [16] A. Grigonis, R. Knizikevicius, Z. Rutkuniene, and D. Tribandis, Vacuum 319 (2003) 70. [17] J. Chen, T. Matsuura, and M. Hori, J. Power Sources 155 (2004) 131. [18] C. Lim and C. Y. Wang, Electrochim. Acta 4149 (2004) 49. Chapter 4 References [1] M. Schulze and C. Christenn, Appl. Surf. Sci. 148 (2005) 252. [2] K. Mitsubayashi, G. Nishio, M. Sawai, T. Saito, H. Kudo, H. Saito, K. Otsuka, T. Noguer and J. L. Marty, Sens. Actuators B 32 (2008) 130. [3] G. W. Mclaughine, K. Braden, B. Franc and G. T. A. Kovacs, Sens. Actuators B 138 (2002) 83. [4] A. Scanni, A. Valentini, G. Perna, V. Capozzi, and A. Convertino, J. Lumines. 87 (2000) 91. [5] A. Choukourov, Y. Pihosh, V. Stelmashuk, H. Biederman, D. Slavinska, M. Kormunda and L. Zajickova, Surf. Coat. Technol. 214 (2002) 151. [6] C. M. Lee, Y. H. Pai, J. M. Zen, and F. S. Shieu, Mater. Chem. Phys.151 (2009) 114. [7] V. Yanev, S. Krischok, A. Opitz, H. Wurmus, J.A. Schaefer, N. Schwesinger and S. -I. -U. Ahmed, Surf. Sci.1229 (2004) 566. [8] C. M. Lee, Y. H. Pai and F. S. Shieu, J. Electrochem. Soc. 156 (2009) B923. [9] J. Xie, D. L. Wood III, D. M. Wayne, T. A. Zawodzinski, P. Atanassov, R. L. Borup, J. Electrochem. Soc. 152(2005) A104. [10] D. L. Wood III and R. L. Borup, in Polymer Electrolyte Fuel Cell Durability, F. N. Buchi, M. Inaba, and T. J. Schmidt, Editors, Springer, New York, 159 (2009). [11] E. Endoth, S. Terazono, and H. Widjaja, Abstract 89, The Electrochemical Society Meeting Abstracts, Vol. 2002-2, Salt Lake City, UT, Oct (2002)20. [12] G. W. Tyndall, R. J. Waltman and J. Pacansky, J. Appl. Phys. 90 (2001) 6287. [13] E. Kokkoli and C. F. Zukoski, J. Colloid Interface Sci. 230 (2000) 176. [14] C. T. Hsieh, J. M. Chen, Y. H. Huang, R. R. Kuo, C. T. Li, H. C. Shih, T. S. Lin and C. F. Wu, J. Vac. Sci. Technol. B 24 (2006)113. [15] A. Satyaprasad, V. Jain and S.K. Nema, Appl. Surf. Sci. 253 (2007) 5462. [16] J. Li, S. Ichizuri, S. Asano, F. Mutou, S. Ikeda, M. Iida, T. Miura, A. Oshima, Y. Tabata, Masakazu Washio, Appl. Surf. Sci. 245 (2005) 260. [17] A. Scanni, A. Valentini, G. Perna, V. Capozzi and A. Convertino, J. Lumine. 91 (2000) 87. [18] J. Ihonen, M. Mikkola and G. Lindbergh, J. Electrochem. Soc.151(2004) A1152. [19] M. Mathias, J. Roth, J. Fleming, W. Lehnert, in: W. Vielstich, H. A. Gasteiger, A. Lamm (Eds.), Handbook of Fuel Cells Fundamentals, Technology and Applications, vol. 3, Fuel Cell Technology and Applications, Wiley, (2003) 517. [20] V. A. Paganin, E. A. Ticianelli and E. R. Gonzalez, J. Appl. Electrochem. 26 (1996) 297. [21] Y. H. Pai, J. H. Ke, H. F. Huang, C. M. Lee, J. M. Zen, and F. S. Shieu, J. Power Sources 161 (2006) 275.
摘要: 在本論文裡,主要是使用氟碳電漿比例分別為1.5、4及6運用活性離子蝕刻系統於導電碳纖維表面製備兼具超疏水與微孔隙之類鐵氟龍電極及其於質子交換膜燃料電池中之應用。在導電碳纖維表面上生成的薄膜其化學成份已由X-Ray光電子光譜儀 (XPS) 檢測出來,其中含有 –CF2 及 –CF3等疏水鍵群,且化學組成十分近似於鐵氟龍;此外,其表面的形貌、疏水及親水特性、電子傳導性質皆與製程中氟碳電漿比例有關。特別是經過氟碳電漿比例為4與1.5這兩種電漿處理過的氣體擴散層,其接觸角均大於130度,且改變氟基的前驅物電漿中的F/C比例可以用來調整膜電極的導電性及親疏水性質。在長效性測試中,當膜電極經由氟碳電漿比例為1.5之電漿(CHF3)處理後比被以其他電漿比例所處理的樣品顯示出較穩定的燃料電池性能輸出,其最佳輸出功率密度為350 mW/cm2,而其對應的電流密度為800 mA/cm2。除此之外,在改變類鐵氟龍薄膜電極厚度的研究上也發現,隨增加薄膜厚度會相對增加薄膜中F/C化學組成比例,同時提升薄膜分子鏈密度,其中又以類鐵氟龍薄膜厚度在1.2微米時具有最佳的電池效能,其最佳功率密度為520 mW/cm2。然而,當類鐵氟龍薄膜厚度由1.2微米增加到2.7微米時,反而產生效能下降的趨勢,主要是起因於膜電極上的類鐵氟龍薄膜厚度為1.2微米時有較低的片電阻,且當膜電極上的類鐵氟龍薄膜厚度為2.7微米時,類鐵氟龍膜有因應力造成的膜破裂的現象,進而導致弱的疏水行為與電池性能。
In this thesis, the ultra-hydrophobic and micro-porous electrodes (MPEs) fabricated by a reactive ion etcher with the fluorocarbon plasmas ratio of 1.5, 4, and 6, respectively, are successfully demonstrated and applied on gas diffusion layer for proton exchange membrane fuel cell. The chemical composition of the film on carbon cloth surface is characterized by X-ray photoelectron spectroscopy (XPS) and hydrophobic groups such as -CF2 and -CF3 groups were then detected, which were very similar to polytrafluoroethlene (PTFE), in addition, the surface morphology, hydrophilic/hydrophobic property and electron conductivity of the as-prepared GDL was fully characterized. The water contact angle and SEM microstructure image of the CF4, CHF3 plasma-treated GDL are both indicated as ∼130◦. Furthermore, the F/C ratio of fluorine-based precursor is the main parameter to adjust the conductivity, porosity, and ultrahydrophobicity of the electrodes. When the electrodes are fabricated with a F/C ratio of fluorine-based precursor of 1.5, it has a much more stable output density, with an optimal power output of 350 mW/cm2 corresponding to a current density of 800 mA/cm2, than that fabricated with a F/C ratio of fluorine-based precursor of 4 during the long-duration test. Besides, the PEMFC measurements show that GDL with a CHF3 prepared Teflon-like film thickness of 1.2 um modules has the best performance with a maximum power density of 520 mW/cm2. However, cell performance tends to decline when the film thickness is increased to 2.7 um, a result which is ascribed to the great sheet resistance and Teflon-like film cracks of the GDL.
URI: http://hdl.handle.net/11455/10709
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.