Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10719
標題: 附著於圓管內上管壁之氣泡周圍流場特性探討
The Characteristics of Water Flow Field around an Air Pocket Attached to the Top Wall of a Circular Pipe
作者: 呂佳勳
關鍵字: 管流
pipeflow
氣泡
可視化
PIV
bubble
flow visualization
PIV
出版社: 土木工程學系所
引用: 1. Baker, C. J. (1979). “The laminar horseshoe vortex.” Journal of Fluid Mechanics, 95(2), 347-367. 2. Bendiksen, K. H. (1984). “An experimental investigation of the motion of long bubbles in inclined tubes.” International Journal of Multiphase Flow, 10(4), 467-483. 3. Dath, J. and Mathiesen, M. (2007). “Pre-study of hydraulic design: Inventory and comprehensive evaluation of bottom outlet in Swedish dams.” SWECO VBB, Stockholm. 4. Estrada, O. P. (2007). “Investigation on the effects of entrained air in pipelines.” Ph. D. Thesis, Institute of Hydraulic Engineering, the University of Stuttgart. 5. Falvey, H. T. (1980). “Air-water flow in hydraulic structure.” Engineering Monograph No. 41, Bureau of Reclamation, USA. 6. Lin, C., Lai, W. J. and Chang, K. A. (2003). “Simultaneous PIV and LDV measurements of periodical oscillatory horseshoe vortex system near square cylinder-base plate juncture.” Journal of Engineering Mechanics, ASCE, 129(10), pp. 1173-1188. 7. Lauchlan, C. S., Escarameia, M., May, R. W. P., Burrows, R. and Gahan, C. (2005). “Air in pipelines- a literature review.” Report SR 649, Rev. 2.0, HR Wallingford. 8. Little, M. J. (2006). “Air in pipelines.” Proceedings of the 4th International Conference on Marine Waste Water Disposal and Marine Environment, Antalya. 9. Lin, C., Huang, W. Y., Hsieh, S. C. and Chang, K. A. (2007). “Experimental study on mean velocity characteristics of flow over vertical drop.” Journal of Hydraulic Research, IAHR, 45(1), pp. 33 ~ 42. 10. Lin, C., Ho, T. C. and Dey, S. (2008). “Experimental study on the characteristics of steady horseshoe vortex system near the junction of rectangular cylinder and base plate.” Journal of Engineering Mechanics, ASCE, 134(2), pp. 184-197. 11. Lin, C., Hsieh W. Y., Hsieh, S. C. and Chang, K. A. (2008). Reply to the Discussion of “Experimental study on mean velocity characteristics of flow over vertical drop.” Journal of Hydraulic Research, IAHR, 46(3), pp. 424-428. 12. Lin, C., Lin, W. J., Hsieh, S. C., Lin, S. S. and Dey, S. (2009). “Flow characteristics around a circular cylinder placed horizontally above a plane boundary.” Journal of Engineering Mechanics, ASCE, 135(7), pp. 697-716. 13. Lin, C., Kao, M. J., Hsieh, S. C., Lo, L. F. and Raikar, R. V. (2012a). “On the flow structures under a partially inundated bridge deck.” Journal of Mechanics, 28(1), pp. 191-207. 14. Lin, C., Lin, W. J., Hsieh, S. C., Chou, S. H. and Raikar, R. V. (2012b). “Velocity and turbulence characteristics of skimming flow over a vertical drop without end sill.” Journal of Mechanics, 28(4), 607-626. 15. Liu, T. and Yang, J. (2012). “Experiments of air-pocket movement in an 18.2o downward 240-mm conduit.” Procedia Engineering, 2012 International Conference on Modern Hydraulic Engineering. 16. Potter, M. C. and Wiggert, D. C. (1991). “Mechanics of fluids.” Prentice-Hall, New Jersey, pp. 272. 17. Rouhani, S. Z. and Sohal, M. S. (1983). “Two-phase flow patterns: A review of research results.” Progress in Nuclear Energy, 11(3), 219-259. 18. Thomas, S. W. (1987). “The Unsteady Characteristics of Laminar Juncture Flow.” Physics of Fluids, 30(2), pp. 283-285. 19. Wickenhauser, M. and Kriewitz, C. R. (2009). “Air-water flow in downward inclined large pipes.” Proceedings of the 33rd IAHR Congress on Water Engineering for a Sustainable Environment, 5354-5361. 20. Zukoski, E. E. (1966). “Influence of viscosity, surface tension, and inclination angle on motion of long bubbles in closed tubes.” Journal of Fluid Mechanics, 25(4), 821-837. 21. 林 呈、何宗浚、謝世圳、張國棟(2002),「低雷諾數條件下直立平板來流端之穩態馬蹄型渦流特性探討」,中國土木水利工程學刊,第14卷,第1號,第53-66頁。 22. 林 呈、謝世圳、高明哲、徐華勇(2004),「應用PIV及FLDV同步量測技術於圓柱近域尾流平均速度場特性之探討」,中國土木水利工程學刊,第16卷,第1號,第80-98頁。 23. 葉建忠(1996),「柱體周邊三維流場之觀測與量測」,碩士論文,國立中興大學土木工程研究所,台中。 24. 盧衍祺(1995),「流體力學」,東華書局,第263頁。 25. 謝世圳(2008),「建置具高時間解析度之PIV系統並應用於圓柱近域尾流特性之探討」,博士論文,國立中興大學土木工程研究所,台中。 26. 羅立芳(2010),「水流通過部份淹沒之橋面版下之流場特性探討」,碩士論文,國立中興大學土木工程研究所,台中。
摘要: 輸水管路中若存在氣泡,可能造成水工結構物振動損毀,進而降低供水結構物之壽命或是危及運營安全。本研究係應用流場可視化與高時間解析之PIV速度量測系統,雷諾數介於17,100至19,000之條件下,針對固定管徑進行不同氣泡體積及圓管傾斜度之實驗量測,主要係探討於完全發展管流中之氣泡周圍流場(氣泡上游端流場、氣泡底部及氣泡下游端流場)特性。根據實驗結果可見氣泡上游端之馬蹄形渦流、氣泡底部及下游端之迴流等特性,並依不同類型之PIV量測分析結果,進行平均速度場、馬蹄型渦流流場特性、鄰近氣泡表面之速度分佈特性、紊流特性及剪力層相似性等探討。其中針對氣泡底部及下游端之剪力層區域進行相似性分析,並定義剪力層中心(ysc)、剪力層相似性之特徵厚度(bs)及速度剖面之最適化曲線二次偏微分後兩峰值處所對應之速度(us1、us2),經過無因次分析後則可以得到兩條最適化曲線為: 輸水管路中若存在氣泡,可能造成水工結構物振動損毀,進而降低供水結構物之壽命或是危及運營安全。本研究係應用流場可視化與高時間解析之PIV速度量測系統,雷諾數介於17,100至19,000之條件下,針對固定管徑進行不同氣泡體積及圓管傾斜度之實驗量測,主要係探討於完全發展管流中之氣泡周圍流場(氣泡上游端流場、氣泡底部及氣泡下游端流場)特性。根據實驗結果可見氣泡上游端之馬蹄形渦流、氣泡底部及下游端之迴流等特性,並依不同類型之PIV量測分析結果,進行平均速度場、馬蹄型渦流流場特性、鄰近氣泡表面之速度分佈特性、紊流特性及剪力層相似性等探討。其中針對氣泡底部及下游端之剪力層區域進行相似性分析,並定義剪力層中心(ysc)、剪力層相似性之特徵厚度(bs)及速度剖面之最適化曲線二次偏微分後兩峰值處所對應之速度(us1、us2),經過無因次分析後則可以得到兩條最適化曲線
URI: http://hdl.handle.net/11455/10719
其他識別: U0005-2406201315370000
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2406201315370000
Appears in Collections:土木工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.