Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10721
標題: 添加不同含量Bi與Pb對黃銅合金微觀組織之研究
A Study on the Microstructures of Brass Alloys with Various Bi and Pb Additions
作者: 王家祥
Wang, Jia-Siang
關鍵字: brass
黃銅
lead-free
Widmanstatten structure
無鉛
費德曼組織
出版社: 材料科學與工程學系所
引用: 1. 陳丙璇、鍾建華,“環保易切削黃銅對腐蝕性能研究”,有色金屬加工,第35 卷,第1期,第13-15頁,2006年 2. 唐生渝、閰靜、李文兵,“鉍黃銅及其加工工藝研究”, 有色金屬加工,第 35卷,第3期,第14-18頁,2006年 3. 張寶宏、叢文博、楊萍,金屬電化學腐蝕與防護,化學工業出版社,2005年 4. R. E. Reed-Hill and Reza Abbaschian, Physical Metallurgy Principles, PWS Publishing Company, the United States of America, pp. 691-692, 1994. 5. 劉偉隆、林淳杰、曾春風、陳文照,物理冶金,全華科技圖書,第20.4-20.6 頁,民國91年 6. Standards Handbook , Copper Development Association, Part7-Alloy Data, 1978. 7. 劉培興、劉曉瑭、劉華鼎,銅與銅合金,化學工業出版社,第29頁,2008 年 8. Binary Alloy Phase Diagrams Massalski, T. B, Editor-in-Chief, ASM International, pp. 981, 1986. 9. R. E. Reed-Hill and Reza Abbaschian, Physical Metallurgy Principles, PWS Publishing Company, the United States of America, pp. 358, 1994. 10. 中南礦冶學院編寫組,有色合金材料生產,中南工業大學出版社,1974年 11. 重有色金屬材料加工手冊編寫組,重有色金屬材料加工手冊,冶金工業出版 社,1979年 12. J. H. Mendenhall, Ed.,Understanding Copper Alloys, Olin Brass Company, East Alton, IL, 1997. 13. N. Brown,“The Cause of the Strengthening in Quenched Beta Brass,” Acta Metallurgica, Vol.7, pp. 212, 1959. 14. 田榮璋、王祝堂,銅合金及其加工手冊,中南大學出版社,2002年 15. 劉興、劉曉瑭、劉華鼎,銅與銅合金,化學工業出版社,第36頁,2008年 16. Seungman Sohn and Tak Kang,“The Effects of Tin and Nickel on the Corrosion Behavior of 60Cu-40Zn Alloys,” Journal of Alloys and Compounds, Vol. 335, pp. 281-289, 2002. 17. 鄧至謙、徐國富,“矽對鋁黃銅組織和性能的影響”,湖南冶金,第4卷, 第55-59頁,1994年 18. 龐普山、肖寅聽,“無鉛易切削黃銅的研究”,廣東工業大學學報,第9卷, 第63-66頁,2001年 19. 張智強,“添加稀土鈰對HSn70-1冷凝管耐蝕性能的影響”,腐蝕與防護, 第1卷,第17-21頁,2005年 20. 羅賢竟、俞健,“砷對70/30黃銅在1MNaNO2水溶液中應力腐蝕開裂的抑 制作用”,腐蝕科學與防護技術,第11卷,第1期,第83-89頁,1991年 21. H. W. Picking,“Characteristic Feature of Alloy Polarization Curves,” Corrosion Science, Vol. 23, No. 10, pp. 1107-1120, 1983. 22. 張愛生、徐鵬、嚴明明、安德剛,“微量硼在HPb59-1黃銅中的細化變 質作用”,熱加工工藝,第7卷,第22-24頁,2005年 23. 王吉會、姜曉霞,“硼對HAl77-2鋁黃銅腐的組織和耐蝕性能的影響”,腐 蝕科學與防護技術”,第8卷,第3期,第185-189頁,1996年 24. Lukac. Ivan, J. Radovan, Bures and Frantisek.Michalansky,“Effect of Mn on the machinabilityof Free-Cutting Brass,” Metalurgija, Vol.32, No. 4, pp. 183-184, 1993. 25. 曹瑜強,“Fe、Ni等高熔點元素在鑄造黃銅中的運用”,鑄造技術,第7卷, 第563頁,2004年 26. 湯宏群、林元祖,“銅銻合金成分對其性能的影響”,材料與表面處理,第1 卷,第39-40頁,2004年 27. K. M. Ismail, R. M. Elsherif, and W. A. Badawy,“Effect of Zn and Pb Contents on the Electrochemical Behavior of Brass Alloys in Chloride-Free Neutral Sulfate Solutions,” Electrochemical Acta, Vol. 49, pp. 5151-5160, 2004. 28. C. Vilarinho, J. P. Davim and D. Soares,“Influence of the Chemical on the Machinability of Brasses,” Journal of Materials Processing, pp. 441-447, 2005. 29. K. M. Ismail, R. M. Elsherif, and W. A. Badawy,“Influence of Zinc and Lead on Brass Corrosion in Dilute Sulfur Acid,” Corrosion, Vol.61, pp. 411-419, 2005. 30. D. M. Peters,“Lead–Free Brass Alloys Seeks New Markets,”Foundry Management and Technology, Vol. 130, No. 7, pp. 8-9, 2002. 31. 閻靜,“環境友好無鉛易切削黃銅的開發”,四川大學材料科學所碩士論文, 2007年 32. 馬福昌,金屬切削原理及其應用,山東科學技術出版社,1982年 33. 肖來榮,“60Cu-Zn-xMg合金組織與性能研究”,中南大學材料科學所碩士 論文,2009年 34. T. Yano, X. Ling, K. Higashida,“Improvement of Formability of Leaded Brass,” During Hot Working Science and Technology, Vol. 15, pp. 67-72, 1999. 35. C. Vilarinho, J. P. Davim, and D. Soares,“Influence of the Chemical Composition on the Machinability of Brasses,”Journal of Materials Processing Technology, Vol. 170, pp. 441-447, 2007. 36. A. L. Fountaine and V. J. Keast,“Compositional Distributions in Classical and Lead-Free Brasses,”Materials Characterization, Vol. 57, pp. 42-429, 2006. 37. T. Ando, T. Atsumi and Y. Yoshikawa,“Improvement of Machinability of Bismuth Substitute for Advanced Copper Base Alloys,”Materials and Technologies, Vol. 41, No. 1, pp. 23-27, 2002. 38. J. T. Plewes and D. N. Losiacono,“Free-Cutting Copper Alloys Contain no Lead,” Advanced Materials and Process, Vol. 140, No. 4, pp. 23-27, 1991. 39. T. Hiroyuki,“Lead-Free,Free-Cutting Brass Alloy Material and Production Method Thereof,”Japan Patent, 2003-277855, 2003. 40. T. Hiroyuki, O. Keiichiro and S. Yosbito,“Lead-Free Copper Base Alloy Material,” Japan Patent, 2000-169919, 2000. 41. 金開生,“韌性Cu-Bi合金的研製”,有色金屬,第5卷,第41-43頁,1995 年 42. 李勇、許方,“無鉛易切削黃銅的研究現狀及其未來展望”,廣東有色金屬 學報,第4卷,第16期,第267-270頁,2006年 43. 田榮璋、王祝堂,銅合金及其加工手冊,中南大學出版社,第191-219 頁, 2002年 44. M. Peters,“Lead-Free Brass Alloys Seek New Markets,”Foundry Management and Technology, Vol. 6, pp. 8-11, 2002. 45. 閻亮明、鄧小民,“環保易切削黃銅的研究”,有色金屬加工,第36卷, 第1期,第23-27頁,2007年 46. 汪治軍、張天莉,“綠色易切削無鉛黃銅棒的研製”,有色金屬加工,第33 卷,第6期,第10-11頁,2004年 47. 秦毅紅,“鉍深加工產品的應用及其發展前景”,世界有色金屬,第4卷, 第43-44頁,1998年 48. R. E. Reed-Hill and Reza Abbaschian, Physical Metallurgy Principles, PWS Publishing Company, the United States of America, pp. 187-188, 1994. 49. 林金山,“鐵-37 錳-10鋁合金之相變化研究”,台灣科技大學機械工程研 究所碩士論文,民國95 50. D. A. Porter and K. E. Eastering, Phase Transformation in Metals and Alloys, CRC PRESS, United Kingdom, pp. 279.320, 1992. 51. N. Stanford and P. S. Bate,“Crystallographic Variant Selection in α-β Brass,” Acta Materialia, Vol. 53, pp. 859-867, 2005. 52. E. P. Simonen and R.Trivedn,“Edgewise Growth of Widmanstätten Alpha Precipitates in Brass,”Acta Metallurgica, Vol. 25, pp. 945-950, 1977. 53. K. Chattopadhyay and H. I. Aaronson,“Interfacial Structure and Crystallographic Studies of Transformations inβˊandβ Cu-Zn Alloys Isothermal Formation of α1 Plates Fromβˊ,”Acta Metall, Vol. 34, No. 4, pp. 695-711, 1986. 54. M. S. Wood and A. Hellawell,“Grain Boundary Precipitation inα/β Brass,” Acta Metallurgica, Vol. 9, pp. 428-433, 1961. 55. L. S. Chang, E. Rabkin, S. Hofmann and W. Gust,“Kinetic Aspects of the Grain Boundary Segregation in Cu(Bi) Alloys,”Acta Mater, Vol. 47, No. 10, pp. 2951-2959, 1999. 56. A. M. Donald and L. M. Brown,“Grain Boundary Faceting in Cu-Bi Alloys,” Acta Metallurgica, Vol. 27, pp. 59-66, 1979. 57. Seung-Jae You, Yoon-Seok Choi, Jung-Gu Kim, Han-Jun Oh and Choong-Soo Chi,“Stress Corrosion Cracking Properties of Environmentally Friendly Unleaded Brasses Containing Bismuth in Mattsson’s Solution,”Materials Science and Engineering, A345, pp. 207-214, 2003. 58. 楊斌、謝建新、張麗娜、劉柏雄、熊仕顯,“硒鉍黃銅中鉍的鑄造凝固行為 研究”,特種鑄造及有色合金,第27卷,第1期,第75-77頁,2007年 59. V. J. Keast and D. B. Williams,“Quantitative Compositional Mapping of Bi Segregation to Grain Boundaries in Cu,”Acta Mater, Vol. 47, No. 15, pp. 3999-4008, 1999. 60. R. Goswami, K. Chattopadhyay and P. L. Ryder,“Melting of Pb Partices Embedded in Cu-Zn Matrices,”Acta Mater, Vol. 46, No. 12, pp. 4257-4271, 1998. 61. 汪建民,材料分析,中國材料科學學會,第115-118頁,民國87年。 62. 許樹恩、吳泰伯,X光繞射原理與材料結構分析,中國材料科學學會,第 187-198,民國81年
摘要: 本研究是以重力鑄造法分別添加1.52%Pb、0.5%Bi、1%Bi及1.5%Bi於brass(Cu-40%Zn)合金中。先使用熱重熱示差同步分析儀進行DTA分析,以確認初始析出相,再藉由光學顯微鏡與掃描式電子顯微鏡觀察試片表面、剖面以及橫截面結構,並使用影像分析量測β相比例,EDS半定量分析表面及剖面,再利用BEI影像分析Bi與Pb的分布,最後以X-ray繞射分析晶面。 經由掃描式電子顯微鏡觀察,Pb-brass呈現網狀結構組織結構,0.5%Bi-brass與1%Bi-brass呈現針狀α相費德曼組織析出,而1.5%Bi-brass則為板狀α相費德曼組織析出,並發現Bi形貌有4種,dimple區有不連續的球形(小於1μm)、圓盤狀(約略1μm)以及塊狀(大於1μm)Bi;無dimple區則有20~30μm連續塊狀Bi。由影像分析可知,隨著Bi添加量越多,β相比例增多且晶粒大小越來越小,但達到1.5%Bi,有β相比例驟降且晶粒明顯增大的現象。 BEI分析結果,Pb嵌入於α相晶粒內部,Bi析出於α/α相之間晶界或α/β相之間晶界。X-ray繞射分析的結果顯示,0.5%Bi-brass與1%Bi-brass之β相比例較高,而Pb-brass與1.5%Bi-brass之β相比例較低。 歸納整個研究結果可知,Bi-brass中裂縫是由於高溫冷卻下來,20~30μm連續塊狀析出於初始β/β相之間晶界,而造成晶界機械性質下降,產生”沿晶”破壞形式的裂紋。
In the study, using the gravity casting method, adding 1.52%Pb, 0.5%Bi, 1%Bi and 1.5%Bi into the brass (Cu-40%Zn) alloy. At first, using TGA/DTA simultaneous thermal analysis showed DTA analysis to confirm initial phase, and then using optical microscopy, scanning electron microscopy, and EDS semi-quantitative analysis examine the sample surface, profile and cross section structure, and by using BEI image to examine the distribution of Bi and Pb, the crystallographic pattern was analyzed using the X-ray diffraction. By scanning electron microscopy, microstructure evolution from the Widmanst&auml;tten into networked structures when Pb was added to 1.5%. The microstructure was a needle Widmanst&auml;tten when Bi contents were 0.5% and 1% and it was a plate Widmanst&auml;tten when Bi contents were 1.5%. There were four kinds of precipitation morphologies of Bi particles. The precipitation morphologies of Bi particles can be divided into a globular (<1 μm), a disc (=1 μm), discontinuous massive (>1 μm), and continuous massive (about 20~30 μm) structures. The amount of βphase increases with increasing of Bi content. The grain size of βphase will be increased when Bi content was added to 1.5% and indicated lager needle Widmanst&auml;tten. By using BEI analysis, Pb particles were embedded in the networked α phase and Bi particles precipitated at the α/α and the α/βgrain boundaries. X-ray diffraction analysis showed that, 0.5% Bi-brass and 1% Bi-brass of the high proportion of β phase, while the Pb-brass and 1.5% Bi-brass of the lower proportion of β phase. To summarize the study results, the formation of crack is because that the continuous massive morphologies (about 20~30μm) at the initial β/β grain boundaries which were embrittled at high temperature subsequent cooling.
URI: http://hdl.handle.net/11455/10721
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.