Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10759
標題: 利用化學水浴沉積法製備具優選方向氧化鋅奈米柱結構之氮化銦鎵發光元件
InGaN-based Light Emitting Diodes with Well-oriented ZnO Nanorod Structures Through Chemical Bath Deposition
作者: 陳器奇
Chen, Chi-Chi
關鍵字: ZnO nanorod
氧化鋅奈米柱
InGaN-based LED
Micro hole array
氮化銦鎵發光元件
微米孔洞陣列
出版社: 材料科學與工程學系所
引用: 1. Y. Kawakami, Y. Narukawa, K. Omae, S. Fujita, and S. Nakamura, Phys. Status Solidi A 178, 331(2000). 2. T. Nishida, H. Saito, and N. Kobayashi, Appl. Phys. Lett. 79, 711 (2001). 3. A. Billeb, W. Grieshaber, D. Stocker, E. F. Schubert, and R. F. Karlicek, Jr., Appl. Phys. Lett. 70, 2790 (1997). 4. E. F. Schubert, Light Emitting Diodes, 2nd ed. (Cambridge University Press, Cambridge, 2003). 5. Tae Su OH, Seung Hwan Kim, Tae Ki Kim, Yong Seok Lee, Hyun Jeong, Gye Mo Yang, and Eun-Kyung Suh, Jpn. J. Appl. Phys., Vol. 47, No. 7 (2008). 6. Jae-Hoon Lee, J. T. Oh, Y. C. Kim, and Jung-Hee Lee, IEEE Photonic Technol. Lett. Vol. 20, No. 18(2008). 7. J. J. Chen, Y. K. Su, Fellow, IEEE, C. L. Lin, S. M. Chen, W. L. Li, and C. C. Kao, IEEE Photonic Technol. Lett., 20 (13),(2008). 8. H. Y. Gao, F. Yan, Y. Zhang, J. M. Li, Y. P. Zeng, and G. H. Wang, J. Appl. Phys. 103, 014314(2008). 9. K. Y. Zang, S. J. Chua, J. H. Teng, N. S. S. Ang, A. M. Yong, and S. Y. Chow, Appl. Phys. Lett. 92, 243126(2008). 10. Min-Ki Kwon, Ja-Yeon Kim, II-Kyu Park, Ki Seok Kim, Gun-Young Jung, Seong-Ju Park, Je Won Kim, and Yong Chun Kim, Appl. Phys. Lett., 92, 251110(2008). 11. C. H. Chiu, H. H. Yen, C. L. Chao, Z. Y. Li, Peichen Yu, H. C. Kuo, T. C. Lu, S. C. Wang, K. M. Lau, and S. J. Cheng, Appl. Phys. Lett. 93, 081108(2008). 12. Yun-Wei Cheng , Kun-Mao Pan , Cheng-YinWang, Hung-Hsien Chen, Min-Yung Ke, Cheng-Pin Chen, Min-Yann Hsieh, Han-Ming Wu, Lung-Han Peng and JianJang Huang, Nanotechnology, 20, 035202(2009). 13. Min-Yann Hsieh, Cheng-Yin Wang, Liang-Yi Chen, Min-Yung Ke, and JianJang Huang, IEEE Journal of Quantum Electronic, Vol. 44, No. 5, (2008). 14. Chung-Chieh Yang, Chia-Feng Lin, Hsun-Chih Liu, Chun-Min Lin, Ren-Hao Jiang, Kuei-Ting Chen, and Jui-Fen Chien, Journal of The Electrochemical Society, 156, H316-H319(2009)(accepted). 15. Tae Sun Kim, Sang-Mook Kim, Yun Hee Jang, and Gun Young Junga, Appl. Phys. Lett. 91, 171114(2007). 16. C. B. Soh, B. Wang, S. J. Chua, Vivian K. X. Lin, Rayson J. N. Tan and S. Tripathy, Nanotechnology, 19, 405303(2008). 17. C. S. Chang, S. J. Chang, Y. K. Su, C. T. Lee, Y. C. Lin, W. C. Lai, S. C. Shei, J. C. Ke, and H. M. Lo, IEEE Photonic Technol. Lett. Vol. 16, No. 3,(2004). 18. T. H. Hsueh, J. K. Sheu, H. W. Huang, J. Y. Chu, C. C. Kao, H. C. Kuo, and S. C. Wang, IEEE Photonic Technol. Lett. Vol. 17, No. 6,(2005). 19. J. Y. Kim, M. K. Kwon, J. P. Kim, and S. J. Park, IEEE Photonic Technol. Lett. Vol. 19, No. 23 (2007). 20. H. G. Kim, T. V. Cuong, M. G. Na, H. K. Kim, H. Y. Kim, J. H. Ryu, and C. H. Hong, IEEE Photonic Technol. Lett. Vol. 20, No. 15 (2008). 21. D. B. Thompson, A. Murai, M. Iza, S. Brinkley, S. P. Denbaars, U. K. Mishira, and S. Nakamura, Jpn. J. Appl. Phys., Vol. 47, No. 5(2008). 22. W. N. Ng, C. H. Leung, P. T. Lai, and H. W. Choi, Nanotechnology 19, 255302(2008). 23. B. S. Chen, C. H. Chiu, K. J. Huang, C. F. Lai, H. C. Kuo, C. H. Lin, T. C. Lu, S. C. Wang and C. C. Yu, Semicond. Sci. Technol. 23, 055002(2008). 24. Gyu-Chul Yi, ChunruiWang and Won Il Park, Semicond. Sci. Technol. 20, S22–S34(2005) 25. Kuveshni Govender, David S. Boyle, Peter B. Kenway and Paul O’Brien, Journal of Materials Chemistry. 14, 2575-2591(2004) 26. Ke Yu, Zhengguo Jin , Xiaoxin Liu, Juan Zhao, Junyi Feng, Applied Surface Science. 253, 4072–4078(2007) 27. Sun-Hong Park, Seon-HyoKim1 and Sang-Wook Han, Nanotechnology. 18, 055608(2007) 28. D. Wang, H. W. Seo, C.-C. Tin, M. J. Bozack, J. R. Williams, and M. Park, Y. Tzeng, JOURNAL OF APPLIED PHYSICS. 99, 093112(2006) 29. X. W.Sun, S. F. Yu, C. X. Xu, C. Yuen, B. J. Chen, and S. Li, Jpn. J. Appl. Phys. 42, 1229-1231(2003) 30. B. P. Zhang, N. T. Binh, K. Wakatsuki, Y. Segawa, Y. Yamada, N. Usami, M. Kawasaki, H. Koinuma, Appl. Phys. Lett. 84, 4098-4100(2004) 31. W. I. Park, Y. H. Jun, S. W. Jung, and G. Yi, Appl. Phys. Lett. 82, 964-966(2003) 32. X. Liu, X. Wu, H. Cao, and R. P. H. Chamg, J. Appl. Phys. 95, 3141-3147(2004) 33. H. T. Ng, J. Li, M. K. Smith, P. Nguyen, A. Cassell, J. Han, and M. Meyyappan, Science. 300, 1249(2003) 34. Sung Jin An, Jee Hae Chae, Gyu-Chul Yi, and Gil H. Park, Appl. Phys. Lett. 92, 121108(2008) 35. J. Zhong, H. Chen, G. Saraf, and Y. Lu, C. K. Choi, J. J. Song, D. M. Mackie and H. Shen, Appl. Phys. Lett. 90, 203515(2007) 36. Sung Jin An and Gyu-Chul Yi, Appl. Phys. Lett. 91, 123109(2007) 37. Honghui Guo, Jianzhang Zhou, Zhonghua Lin, Electrochemistry Communications. 10, 146–150(2008) 38. C. H. Chiu, C. E. Lee, C. L. Chao, B. S. Cheng, H. W. Huang, H. C. Kuo, T. C. Lu, S. C. Wang, W. L. Kuo, C. S. Hsiao, and S. Y. Chen, Electrochemical and Solid-state Letters. 11, H84-H87(2008) 39. M.H. Huang, S. Ma, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science. 292, 1897-1899(2001) 40. Tae Su OH, Seung Hwan Kim, Tae Ki Kim, Yong Seok Lee, Hyun Jeong, Gye Mo Yang, and Eun-Kyung Suh, Jpn. J. Appl. Phys., Vol. 47, No.7(2008) 41. C. H. Chiu, H. H. Yen, C. L. Chao, Z. Y. Li, Peichen Yu, H. C. Kuo, T. C. Lu, S. C. Wang, K. M. Lau, and S. J. Cheng, Appl. Phys. Lett. 93, 081108(2008) 42. Yun-Wei Cheng , Kun-Mao Pan , Cheng-YinWang, Hung-Hsien Chen, Min-Yung Ke, Cheng-Pin Chen, Min-Yann Hsieh, Han-Ming Wu, Lung-Han Peng and JianJang Huang, Nanotechnology, 20, 035202(2009) 43. Tae Sun Kim, Sang-Mook Kim, Yun Hee Jang, and Gun Young Junga, Appl. Phys. Lett. 91, 171114(2007) 44. T. Takeuchi, C. Kisielowski, V. Iota, B. A. Weinstein, L. Mattos, N. A. Shapiro, J. Kruger, E. R. Weber, and J. Yang, Appl. Phys. Lett., 73, pp. 1691(1998) 45. L. Vayssieres, Adv. Mater., 15, 464-466(2003) 46. 吳瑞垚,“以射頻磁控濺鍍法製備AZO薄膜特性之研究”,國立中興大學電機工程學系所碩士學位論文,2009年 47. Z.R. Tian, J.A. Voigt, J. Liu, B. Mckenzie, and M.J. Mcdermott, J. AM. CHEM. SOC., 124, 12954-12955(2002) 48. J.S. Huang, and C.F. Lin, J. Appl. Phys., 103, 014304(2008) 49. C. H. Chao, J. S. Huang, and C. F. Lin, Journal of Physical Chemistry C., 113, 512–517(2009) 50. Q. Li, V. Kumar, Y. Li, H. Zhang, T.J. Marks, and R.P.H. Chang, Chem. Mater., 17, 1001-1006(2005) 51. B.S. Kang, S.J. Pearton, and F. Ren, Appl. Phys. Lett., 90, 083104(2007) 52. R.B.M. Cross, M.M.D. Souza, and E.M.S. Narayanan, Nanotechnology., 16, 2188-2192(2005) 53. X. Liao, X. Zhang, and S. Li, Nanotechnology., 19, 225303-225310(2008) 54. 楊乃豪,“利用紫外光激發晶種層促進氧化鋅奈米棒優選成長之研究”,國立中興大學材料科學與工程學系碩士學位論文,2009年
摘要: 本研究以化學水浴沉積法及汞燈輔助照射,以電漿濺鍍法沉積氧化鋅鋁晶種層上製備氧化鋅奈米柱(Zinc oxide Nanorods on Sputtered seed layer, ZNS),並進而利用微米孔洞陣列(Micro-Hole Array, MHA)控制氧化鋅奈米柱之生長。另以脈衝雷射法沉積氧化鋅鋁晶種層上製備氧化鋅奈米柱(Zinc oxide Nanorods on Pulsed laser deposition seed layer, ZNP)之發光二極體元件(Light Emitting Diode, LED),對其進行各種分析探討。 由場發射掃描式電子顯微鏡及X-ray繞射分析儀觀察氧化鋅鋁晶種層及氧化鋅奈米柱發現,以脈衝雷射法沉積之氧化鋅鋁晶種層,表面具有平整晶界與明顯晶粒,提供成核成長位置且沿(002)優選方向排列,接續以化學水浴沉積法於此晶種層生長氧化鋅奈米柱,可得到具狹窄(002)繞射峰半高寬之奈米柱。透過場發射高解析度穿透式電子顯微鏡分析,可佐證氧化鋅奈米柱結晶性良好,其晶格方向幾乎為(002)方向。利用顯微光激發螢光光譜可定義氧化鋅奈米柱結構之形成與光激發螢光波長及強度關係,ZNP-LED之氧化鋅光激發螢光訊號(波長378.4nm)半高寬窄且強,而多重量子井光激發螢光訊號(波長451.3nm)則較ZNS-LED來得弱,除優選方向造成奈米柱光激發取光強度較強外,顯示奈米柱結晶性佳亦具有較強之光激發強度。 在元件發光強度對直流注入電流特性曲線量測中,ZNP-LED具大面積細長,且傾向垂直面方向生長之奈米柱,在20毫安直流注入下,光取出強度相較ST-LED提升54.3%。ZNS-LED具大面積之奈米柱生長,因此光取出效率(40.7%)高於ZNS-MHA-LED(29.4%)。在發散角特性量測中,ZNP-LED發散角(146o)小於ZNS-LED(149o),因其奈米柱垂直生長比例較高,ZNS-LED發散角與ST-LED(149.4o)差異不大,因其奈米柱不具特定方向性,故發散角呈現均向性擴大;ZNS-MHA-LED之發散角(142.2o)呈現集中現象,因奈米柱藉由微米孔洞控制,會沿垂直平面之優選方向生長。由實驗結果得知,利用化學水浴沉積法與汞燈輔助照射所製備出的氧化鋅奈米柱結構,在發光元件上具有極大的應用潛力。
In this thesis, a chemical bath deposition with a mercury lamp illumination was used to synthesize ZnO nanorods with and without micro-hole-array patterns on an aluminum zinc oxide (AZO) seed layer that deposited by a sputtering system (Zinc oxide Nanorods on Sputtered seed layer, ZNS). The ZnO nanorods also grown on an AZO seed layer deposited through a pulsed laser deposition (PLD) system (Zinc oxide Nanorods on Pulsed laser deposition seed layer, ZNP). Both of the AZO seed layers with top ZnO nanorods structures were grown on the InGaN-based light-emitting diode (LED) structure. Field emission scanning electron microscopy and X-ray diffractometer were used to analyze AZO seed layer and ZnO nanorods structures. The obviously grains structure was observed on the flat AZO seed layer deposited through a pulsed laser deposition that indicated an excellent crystalline along the (002) preferred orientation. The well-aligned ZnO nanorods deposited through the PLD system had a preferred oriented along the (002) direction. The preferred-orientated ZnO nanorods structure was observed in micrograph with the high resolution transmission electron microscopy. The growth and formation of ZnO nanorods can be defined the relationship between photoluminescence wavelength and the intensity by micro-photoluminescence spectrum. The PL peak of ZNP-LED is at 378.4nm and intensity is higher than ZNS-LED. On the other hand, the PL peak of MQW is at 451.3nm and the intensity is lower than ZNS-LED. It is confirmed that ZnO nanorods grown on AZO seed layer deposited by pulsed laser deposition has higher PL intensity. The light output power had a 54.3% and a 40.7% enhancement for the ZNP-LED and the ZNS-LED compared to the standard LED at a 20mA. The light output power of the ZNS-LED structure (40.7%) was stronger than the ZNS-MHA-LED (29.4%) that contributed to the large area ZnO nanorods on LED structure. According to divergence angle measurement, the divergent angle of ZNP-LED (146o) was smaller than ZNS-LED (149o) that the ZNP-LED had the well-aligned ZnO nanorods. The divergent angle of ZNS-LED is 149.4o similar to the ST-LED for the random orientation grown ZnO nanorods. The small divergent angle of ZNS-MHA-LED is 142.2o that was caused by the uniform orientation ZnO nanorods controlled by the micro hole array patterns. The ZnO nanorods structures grown through a chemical bath deposition with a mercury lamp illumination have potential applications on the high efficiency InGaN-based LEDs.
URI: http://hdl.handle.net/11455/10759
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.