Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10769
標題: 離子束轟擊對鎳鐵/氧化鎳奈米雙層薄膜之結構及磁性質影響
The influence of ion-beam bombardment on Structures and Magnetic Properties of NiFe/NiO Bilayers
作者: 黃宣榕
Huang, Hsuan-Rong
關鍵字: exchange bias
交換偏壓
ion-beam deposition technique
雙離子束濺鍍技術
出版社: 材料科學與工程學系所
引用: [1] W. P. Meiklejohn, C. P. Bean, Phys. Rev., 102, 1413 (1956). [2] D. Mauri, H. C. Siegmann, J. Appl. Phys., 82, 3047 (1987). [3] A. P. Malozemoff, Phys. Rev. B., 35, 3679 (1987). [4] N. C. Koon, Phys. Rev. Lett., 78, 4865 (1997). [5] T. C. Schulthess and W. H. Butler, Phys. Rev. Lett., 81, 4516 (1998). [6] A. E. Berkowitz, Kentaro Takano, J. Magn. Magn. Mater., 200, 552 (1999). [7] J. Nogues, Ivan K. Schuller, J. Magn. Magn. Mater., 192, 203 (1999). [8] J. Nogues, D. Lederman, T. J. Moran, and I. K. Schuller, Phys. Rev. Lett.,76,4624 (1996). [9] N. C. Koon, Phys. Rev. Lett.,78,4865 (1997). [10] Z. Y. Liu and S. Adenwalla, J. Appl. Phys. 94, 1105 (2003). [11] Nicola A. Spaldin,”Magnetic materials”. [12] David Jiles, “Introduction to magnetism and magnetic materials”, Chapman & Hall. [13] 金重勳主編,”磁性技術手冊”,中華民國磁性技術協會。 [14] J. Noguesa, J. Sort, V. Langlais, V. Skumryev, S. Surinach, J.S. Munoz, M.D. Baro, Physics Reports, 422, 65 (2005). [15] 胡裕民、黃榮俊,”鐵磁/反鐵磁金屬薄膜之間的交換磁異向性”,物理雙月刊廿廿卷六期。 [16] L. Neel, Ann Phys., 2, 61 (1967). [17] U. Nowak and K. D. Usadel, Phys. Rev. B., 66, 014430 (2002). [18] B. Beckmann, U. Nowak, and K. D. Usadel, Phys. Rev. Lett., 91, 187201-1 (2003). [19] S. Dubourg and J. F. Bobo, B. Warot, E. Snoeck, and J. C. Ousset, Phys. Rev. B., 64, 054416 (2001). [20] Z. Y. Liu and S. Adenwalla, Phys. Rev. B., 67, 184423 (2003). [21] H. Ohldag, G. van der Laan, and E. Arenholz, Phys. Rev. B., 79, 052403 (2009). [22] R. C. O’handley,”Modern Magnetic Materials”,John Wiley and sons Inc.(2002). [23] M.N.Baibich, J.M.Broto, A.Fert, F. Nguyen Van Dau and F. Pctroff, Phys. Rev. Lett., 61,2472 (1988) [24] R. R. Katti, proceedings of the IEEE, 91, 687 (2003). [25] Modern Magnetic Materials, R. C. O’Handley, John Wiley and Sons, Inc. New York (2000). [26] Phase Diagrams of Ternary Iron Alloys, V. Raghavan, The Indian Institute of Mateals, part 5, 7 (1989). [27] P. P. Freitas, J. L. Leal, T. S. Plaskett, L. V. Melo, and J. C. Soares, J. Appl. Phys., 75, 6480 (1994). [28] T. C. Anthony, J. Brug, and S. Zhang, IEEE Trans. Magn., 30, 3819 (1994). [29] C.-L. Lin, J. M. Sivertsen, and J. H. Judy, IEEE Trans. Magn., 30, 3834 (1994). [30] J. Fujikata, K. Isihara, K. Hayashi, H. Yamamoto, and K. Yamada, IEEE Trans. Magn., 31, 3936 (1995). [31] B. Dieny, V. S. Speriosu, S. S. P. Parkung, B.A. Gurney, D. R. Wilhoit, and D. Mauri, Phys. Rev., 43, 1297 (1991). [32] L. Geppert, IEEE Spectrum, 49, March 2003. [33] J. X. Shen and M. T. Kief, J. Appl. Phys., 79, 5008 (1996). [34] De-Hua Han, Jian-Gang Zhu, and Jack H. Judy, J. Appl. Phys., 81, 4996 (1997). [35] L. Neel, C. R., Acad Sci. 255, 1676 (1962). [36] Richard P. Michel and Alison Chaiken, IEEE Trans. Magn., 32, 4651 (1996). [37] M. Fraune, U. Rudiger, and G. Guntherodt, S. Cardoso and P. Freitas, Appl. Phys. Lett., 77, 3815 (2000). [38] R. C. Weast, ”Handbook of Chemistry and Physics”, CRC Press, Inc 1986. [39] E. M. Levin et al, ”Phase Diagram for Ceramists”, Amer. Cer. Soc., 1964. [40] T. C. Anthony, J. Brug, and S. Zhang, IEEE Trans. Magn., 30, 3818 (1994). [41] Lederman D., Nogues J., Phys. Rev. B. 56(5), 2332 (1997). [42] R. P. Michel and A. Chaiken, C. T. Wang, L. E. Johnson, Phys. Rev. B., 58, 8566 (1998). [43] B. D. Cullitu and S. R. Stock, ”Element of X-Ray Diffraction”. [44] J. J.Cuomo and S. M. Rossnagel, H. R. Kaufman, “Handbook of ion beam processing technology:principles, deposition, film modification , and synthesis”, Noyes Publication, 1989. [45] Milton Ohring, “Materials Science of Thin Films, Deposition and Structure”, 2002。 [46] H. R. Kaufman, R. S. Robinson, “End Hall Ion Source”, J. Vac. Sci. Technol. A, 5(3), 2081 (1987). [47] C. Weissmantle, “Ion Beam Deposition of Special Film Structure”, Vac. Sci. Technol., 18, 179 (1989). [48] T. C. Huang, G. Lim, F. Parmigiani, and E. Kay, J. Vac. Sci. Technol. A, 3, 216 (1985). [49] R. A. Roy, D. Yee, and J. J. Cuomo, J. Vac. Sci. Technol. A, 6, 1621 (1988). [50] 李正中,“薄膜光學與鍍膜技術”,藝軒圖書出版社,2001。 [51] H. R. Kaufman, R. S. Robinson, “End Hall Ion Source”, J. Vac. Sci. Technol. A, 5(3), 2081 (1987). [52] C.H.Lai, P.H.Huang, J.Appl. Phys., 95, 7222 (2004). [53] 汪健民主編,“材料分析”,中國材料科學學會, 1998。 [54] David B. Williams and C. Barry Carter, “Transmission Electron Microscopy”, Plenum Press (1996). [55] 龔志榮,駱榮富,”電子顯微鏡教材大綱”。 [56] David Jiles,”Magnetism and Magnetic Materials”, Chapman & Hall,(1991). [57] L. H. Lewis, K. M. Bussmann, Rev. Sci. Instrum. 67, 3537 (1996). [58]楊鴻昌,”最敏感的感測元件SQUID及其前瞻性應用”,物理雙月刊廿四卷五期。 [59] J. Claudon, F. Balestro, F.W. J. Hekking, and O. Buisson, Phys Rev. Lett. 93, 187003 (2004). [60] K. W. Lin, PhD. Thesis, State University of New York at Stony Brook, (2002). [61] F. Nolting, A. Scholl, J. Stohr, J. W. Seo, J. Fompeyrine, H. Siegwart, J.-P. Locquet, S. Anders, J. Lu ning, E. E. Fullerton, M. F. Toney, M. R. Scheinfeink & H. A. Padmore Nature, Vol. 405, 767 (2000). [62] Y. U. Idzerda, L.H. Tjeng, H.-J. Lin, C. J. Gutierrez, G. Meigs, C.T. Chen, Phys. Rev. B 48, 4144 (1993). [63] C. M. Schneider, Z. Celinski, M. Neuber, C. Wilde, M. Grunze, K. Meinel, J. Kirschner, J. Phys.: Condens. Mater. 6, 1177 (1994). [64] 魏德新、許瑤真,”光電子激發顯微鏡於磁性薄膜及微結構研究的介紹”,物理雙月刊廿六卷四期。 [65] 林明彥、張嘉升、黎文龍,“原子力顯微儀的原理(上)”, 科儀新知第二十七卷第二期94.10。 [66] A. Ehresmann, I. Krug, A. Kronenberger, A. Ehlers, D. Engel, J. Magn. Magn. Mater., 280, 369 (2004). [67] W. L. Roth, Phys Rev., 110, 1333 (1958). [68] G. Salazar-Alvarez, J. Sort, S. Surinach, M. D. Baro, and J. Nogues, J.Am. Chem. Soc., 129, 9102 (2007). [69] K.-W. Lin, J.-Y. Guo, T.-J. Chen, H. Ouyang, E. Vass, and J. van Lierop, J. Appl. Phys., 104, 123908 (2008). [70] Luc Thomas, Béatrice Negulescu, Yves Dumont, Michel Tessier, Niels Keller, André Wack, and Marcel Guyot, J. Appl. Phys., 93, 6838 (2003). [71] Jung-Yi Guo, Johan van Lierop, Sheng-Yueh Chang, and Ko-Wei Lin, Jpn. J. Appl. Phys. 48, 073004 (2009). [72] 中興大學材料工程學系碩士論文,陳宗杰,氧含量對鎳鐵/氧化錳奈米雙層薄膜之結構及磁性質之影響,第91頁,民國98年。 [73] 衛榮漢、賴梅鳳、張慶瑞,”磁性微結構中自旋磁化組態及其動態過程”,物理雙月刊廿六卷四期。 [74] L. D. Landau and E. M. Lifshitz, Sov. Phys. 8, 153 (1935). T. L. Gilbert, Phys. Rev. 100, 1243 (1955). [75] D. Mauri, E. Kay, D. Scholl, and J. K. Howard, J. Appl. Phys. 62, 2929 (1987). [76] M. D. Stiles and R. D. McMichael, Phys. Rev. B, 59, 3722 (1999). [77] John F. Moulder, William F. Stickle, Peter E. Sobol, and Kenneth D. Bomben, “Handbook of X-ray Photoelectron Spectroscopy”. [78] Ivanov-Emin B.N., Nevskaya N.A., Zaitsev B.E., Ivanova T.M. Zh. Neorg. Khimii 27, 3101 (1982). [79] Chyun.-H. Su, Shen-Chuan Lo, K.-W. Lin, J. van Lierop, and Hao Ouyang, J. Appl. Phys. 105, 033904 (2009). [80] J. Nogue''s, D. Lederman, T. J. Moran, and Ivan K. Schuller, K. V. Rao, Appl. Phys. Lett., 68, 3186 (1996). [81] M.R. Fitzsimmons, C. Leighton, J. Nogues, A. Hoffmann, K. Liu, C. F.Majkrzak, J. A. Dura, J. R. Groves, R. W. Springer, P. N. Arendt, V. Leiner, H.Lauter, and I. K. Schuller, Phys. Rev. B 65, 134436 (2002). [82] J. Nogues, T. J. Moran, D. Lederman, I. K. Schuller, and K. V. Rao, Phys. Rev. B59, 6984 (1999). [83] F. Radu, M. Etzkorn, R. Siebrecht, T. Schmitte, K. Westerholt, and H. Zabel, Phys. Rev. B 67, 134409 (2003). [84] S. Brems, K. Temst, and C. Van Haesendonck, Phys. Rev. Lett. 99, 067201 (2007). [85] T. J. Moran, J. Nogue´ s, D. Lederman, and Ivan K. Schuller, Appl. Phys. Lett., 72, 617 (1998). [86] T. M. Hong, Phys. Rev. B, 58, 97 (1998). [87] M. R. Fitzsimmons, C. Leighton, J. Nogue´s, A. Hoffmann, Kai Liu, C. F. Majkrzak, J. A. Dura, J. R. Groves, R. W. Springer, P. N. Arendt,1 V. Leiner, H. Lauter, and Ivan K. Schuller, Phys. Rev. B, 65, 134436 (2002). [88] K.-W. Lin, M.-R. Wei, and J.-Y. Guo, J. Nanosci. and Nanotechnol., 9, 2023 (2009). [89] K.-W. Lin, J.-Y. Guo, H.-Y. Liu, H. Ouyang, D.-H. Wei, and J. van Lierop, J. Appl. Phys. 103, 07C105 (2008). [90] Chyun.-H. Su, Shen-Chuan Lo, K.-W. Lin, J. van Lierop, and Hao Ouyang, J. Appl. Phys. 105, 033904 (2009). [91] G. H. Yu, C. L. Chai, F. W. Zhu, and J. M. Xiao, W. Y. Lai, Appl. Phys. Lett., 78, 1706 (2001). [92] J. Stöhr, A. Scholl, T. J. Regan, S. Anders, J. Lüning, M. R. Scheinfein, H. A. Padmore, and R. L. White, Phys. Rev. Lett., 83, 1862 (1999). [93] A. Hoffmann, M. Grimsditch, and J. E. Pearson, J. Nogue´s, W. A. A. Macedo, Ivan K. Schuller, Phys. Rev. B, 67, 220406 (2003). [94] N. J. Gokemeijer, R. L. Penn and D. R. Veblen, C. L. Chien, Phys. Rev. B, 63, 174422 (2001).
摘要: 本研究是利用雙離子束濺鍍系統製備鎳鐵(9nm)/氧化鎳(16nm)雙層薄膜,為了控制鐵磁層與反鐵磁層間的磁矩排列組態,因此在氧化鎳表面進行(1)不同離子束電壓(VEH=0~150 V)進行5分鐘轟擊,以及(2)選用VEH=150V以不同時間(1~20分鐘)進行轟擊,並且再使用(3)單晶MgO(110)基板及(4)奈米條紋基板鍍上雙層薄膜,來研究微結構及磁性質的改變。由X光繞射及穿透式電子顯微鏡分析鎳鐵/氧化鎳雙層薄膜主要是由f.c.c.結構之鎳鐵(a~3.55 Å)及岩鹽結構之氧化鎳(a~4.25 Å)所組成,雙層薄膜之晶粒大小介於5~20 nm間。從原子力顯微鏡觀察到單層氧化鎳經由越高電壓之離子束轟擊會形成越小的粗糙度,隨轟擊時間增加會造成粗糙度先下降然後增高。 第一部分是利用不同電壓之離子束轟擊(VEH=0V、70V、100V、130V、150V)反鐵磁層表面5分鐘,為的是控制氧化鎳表面之結晶優選方位及磁矩結構,接著再鍍上單層鎳鐵層。在磁性質分析中,當離子束電壓大於VEH=130V以上其矯頑磁力皆會明顯下降,下降可能和氧化鎳表面粗糙度有關;在交換偏壓場方面當VEH=0V~130V時皆得到典型負的交換偏壓場,而在VEH=150V會得到正及最大值的交換偏壓場,出現正的交換偏壓場可能和氧化鎳的結晶生長方向有關。在磁力顯微鏡中則發現VEH=0V~130V時是得到較細的條紋狀磁區,而在VEH=150V是得到片狀的磁區。 第二部分是選用VEH=150V轟擊氧化鎳表面(1分鐘、2分鐘、10分鐘、20分鐘),同樣是為了控制氧化鎳表面之結晶優選方位及磁矩結構,最後在鍍上鎳鐵層。在此我們將第一部分VEH=150V轟擊5分鐘之數據共同討論,因此在T=5K之磁性質中的交換偏壓場出現不規則的跳動,轟擊1分鐘交換偏壓場趨近於零,轟擊2分鐘則為典型負的交換偏壓場,當轟擊時間大於5分鐘則皆為正的交換偏壓場,出現不同符號之交換偏壓場可能和氧化鎳的結晶生長方向有關,而粗糙度會影響交換偏壓場的值。磁力顯微鏡中觀察到在10分鐘的磁區分佈中是得到細的條紋狀磁區。 第三部分是將雙層薄膜鍍在不同的基板上,分別使用單晶MgO(110)方向基板並用不同電壓之離子束轟擊(VEH=0V、130V、150V)氧化鎳表面,以及使用寬度約20 nm之條紋基板。使用MgO(110)基板在T=5K的磁性質中發現得到的矯頑磁力皆會大於使用熱矽基板的雙層薄膜,而在交換偏壓場則是較使用熱矽基板雙層薄膜要來的弱。使用奈米條紋基板在T=5K的磁性質中,當外加磁場平行條紋方向的矯頑磁力會大於外加場垂直條紋方向,並測得的交換偏壓場會出現不同符號,得到的數值皆會大於使用熱矽基板的雙層薄膜。
Exchange bias in NiFe(9nm)/NiO(16nm) bilayers were investigated as a function of bottom NiO layers with dual ion beam bombarded by (1) different End-Hall voltage (0~150 V) for 5 minutes and (2) different periods (1~20 minutes) with VEH=150 V. And used different substrates (3) MgO(110) single crystal, (4) nanostripe. X-ray diffractometry results have shown NiFe/NiO bilayers consisted of a f.c.c. NiFe (a~ 3.55 Å) and a rock-salt f.c.c. NiO (a~ 4.25 Å). The grain sizes of NiO single layer range from 5 nm to 15 nm, as revealed by TEM. From AFM the more End-Hall voltage bombarded NiO surface would get smoother roughness and rised the periods cause the roughness to drop then increase. Different ion-beam energy(VEH=0V、70V、100V、130V、150V)was used to change the bottom layer of NiO structure in NiFe. Magnetometry results at 5K under a 20 kOe field-cooling, only the NiFe/NiO (VEH=150 V) bilayer deposited on a SiO2 substrate exhibited an unusual positive exchange bias field, Hex~ +200 Oe with an asymmetric hysteresis loop among all the films. The results of different periods with VEH=150 V would found exchange bias field irregularity, when tbomb.> 5 minutes all were show positive Hex. The drastic change from conventional negative to positive Hex is likely attributed to the AF NiO spin reorientation due to ion-beam bombardment, as revealed by the increased peak ratio of (200) to (111) determined by XRD. when replacing the SiO2 substrate with a MgO (110) substrate, a much smaller Hex (~ -20 Oe) was found in NiFe/NiO (VEH= 0 V and 130 V) bilayers. This indicates that the compensated AF NiO spins (thus smaller Hex) may be formed by using a MgO (110) substrate. Our results suggest that the strength and polarity of exchange bias field are affected by the substrate type (single crystal vs. amorphous) as well as by ion-beam bombardment. Discuss of NiO crystalline and surface roughness may effect exchange bias field and coervice field. The exchange bias field has different sign because influence of FM/AF interface has different exchang coupling. In other words, surface spin reorientation that is due to moderate ion-beam bombardment effects on the surface of the NiO layer.
URI: http://hdl.handle.net/11455/10769
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.