Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10791
標題: 以射頻磁控濺鍍法製備P型矽鍺熱電薄膜與熱退火對熱電性質之影響
Preparation of P-type Silicon-Germanium thermoelectric thin films by RF magnetron sputtering and the effect of thermal annealing on thermoelectric properties
作者: 尹新淳
Yin, Shin-Chun
關鍵字: Thermoelectric thin film
熱電薄膜
Annealing
crystallization
Hall effect
退火
結晶性
霍爾效應
出版社: 材料科學與工程學系所
引用: [1]H. J Goldsmid and R. W. Douglas, “The use of semiconductors in thermoelectric refrigeration”, Br. J. Appl. Phys., 5(1954)386. [2]D. M. Rowe, “CRC Handbook of Thermoelectrics”, CRC Press Boca Raton London New York Washington, D.C., (1995). [3]G. S. Nolas, G. A. Slack J.L. Cohn, and S. B. Schujman,“The next generation of thermoelectric materials”, Proceedings of the 17th International Conference on Thermoelectrics, (1998)294. [4]朱旭山,「熱電材料與元件之原理與應用」,電子與材料雜誌,第22期,2004 年3月,78。 [5]J. C. Peltier, “Nouvelles experiences sur la calricite des courans electrique”, Ann. Chim. et Phys., 56(1834), 371. [6]W. Thomson, “Account of researches in thermo-electricity”, Philos. Mag., 8 (1854), 62. [7]W. Thomson, “On the electrodynamic qualities of metals”, Philos. Trans. R. Soc. London, 146(1856), 649. [8]V.I. Fistul, “Heavily Doped Semiconductors”, Plenum, New York, (1969). [9]D. M. Rowe, and C. M. Bhandari, “Modern Thermoelectrics, ”Holt Saunders , London ,(1983). [10]D. M. Rowe, “CRC Handbook of Thermoelectrics”, CRC Press Boca Raton London New York Washington, (1995). [11]H. J. Goldsmin, “Thermoelectric Refrigeration”, Plenum, New York,(1986). [12]吳三連,”矽鍺材料之發展現況”,真空技術,十六卷四期,36~42。 [13]吳材福、陳裕愷、張健軒,「太陽光電能供應與照明系統綜論第二版」,全華科技圖書股份有限公司,2~9。 [14]L.H. Van Vlack, 「材料科學與工程」,第六版,李志偉、劉森源、張庭瑞譯,文京圖書有限公司,台北,1996,498。 [15]T. Massalski, CD ROM: Binary Alloy Phase Diagrams, ASM International , OH, USA, 1996. [16]Guo-Ping Ru, Xin-Ping Qu, Qiang Gu, Wen-Jie Qi, Bing-Zong Li, “Boron and phosphorous diffusion in ion-beam-sputtering deposited SiGe films”, Materials Letters 57(2002) 921~924. [17]T. J. King and K. C. Saraswat, “A low-temperature ( 550℃) silicon - germanium MOS thin-film transistor technology for large-area electronics, ”IEDM Tech. Dig. (1991) 567-570. [18]R. People, “Physics and applications of GexSi1-x/Si strained-layer hetero- structures” , IEEE J. Quantum Electron, 22(9) (1986) 1696-1710. [19]C. Eisele, M. Bergera, M. Nerding and H. P. Strunk, “Laser-crystallized microcrystalline SiGe alloys for thin film Solar cells”, Thin Solid Films, 427 (2003) 176-180. [20]蘇清森,“真空技術精華”,2003,8-35。 [21]A Grill. Cold Plasma in Materials Fabrication: From Fundamentals to Applications, IEEE Press, 1994 1-22. [22]H. V. Boening,“Plasma Science and Technology”, Cormell University Press, 1982. [23]Brian Chapman, “Glow Discharge Processes”, John Wiley & Son, Inc, United State of America, 1980, Chapter 5. [24]柯文賢,「表面與薄膜處理技術」,全華圖書股份有限公司,5-4~5-11、8-8~8-13。 [25]J. L. Vossen and W. Kern, “Thin Film Process, Academic Press”, (1991) , 134. [26]Donald L. Smith, “Thin-Film Deposition Principles and Practice”, (1990), 483. [27]行政院國家科學委員會著,“真空技術與應用”,精密儀器發展中心出版,(2001),379。 [28]陳建人等著,「真空技術與應用」,行政院國家科學委員會精密儀器發展中心,379~389。 [29]E. Bauer, Z. Kristallographie, 110, (1958), 372. [30]F. Qiu, M. Matsumiya, W. Shin, N. Izu, N. Murayama, “Hydrogen Sensor Based on RF-Sputtered Thermoelectric SiGe Film”, The Japan Society of Applied Physics. 42(2003)1563-15. [31]G. Beensh-Marchwicka, S Osadnik, E. Procibw and W Mielcarek, “Structure and morphology of Ge(Au) sputtered films with useful Seebeck effect”, Vacuum 50(1998), 207. [32]F. Qiu, W. Shin, M. Matsumiya, N. Izu, I. Matsubara, N. Murayama, “Miniaturization of thermoelectric hydrogen sensor prepared on glass substrate with low-temperature crystallized SiGe film”, Sensors and Actuators B 103 (2004), 252~259. [33]K. Tajima, W. Shin, N. Murayama, T. Itoh, N. Izu and I. Matsubara, “Preparation of Phosphorus-Doped Si0.8Ge0.2 Thermoelectric Thin Film Using RF Sputtering with Induction Coil”, Journal of the Ceramic Society of Japan 113 8(2005)558~561. [34]K. Tajima, F. Qiu, W. Shin, N. Sawaguchi, N. Izu, I. Matsubara and N. Murayama, “Thermoelectric Properties of RF-Sputtered SiGe Thin Film for Hydrogen Gas Sensor”, Japanese Journal of Applied Physics, Vol. 43, No. 9A, 2004, 5978~5983. [35]Guo-Ping Ru, Xin-Ping Qu, Qiang Gu, Wen-Jie Qi, Bing-Zong Li, “Boron and phosphorous diffusion in ion-beam-sputtering deposition SiGe films”, Materials letters 57(2002)921-924. [36]L. K. The, W. K. Choi, L. K. Bera W. K. Chim, “Structral characterization of polycrystalline SiGe thin film”, Solid-State Electronics 45(2001)1963-1966. [37]E. V. JelenKovic, K. Y. Tong, and Z. Sun, C. L. Mak, W. Y. Cheung, “Properties of crystallized Si1-XGeX thin films deposited by sputtering”, American Vacuum Society(1997)2836-3841.
摘要: 本研究使用摻雜微量硼之矽靶鑲埋鍺粒,鍺粒尺寸為直徑:5 mm × 厚度:3 mm,鑲埋數量分別為一顆、兩顆、四顆,經由射頻磁控濺鍍法沉積矽鍺薄膜於矽基板上,再以X光光電子能譜儀量測,找出可製備薄膜成份Si0.8Ge0.2之靶材,並將基板以不同溫度施以退火處理,期望得到具結晶性的熱電薄膜,探討結晶的結構型態對熱電性質的影響,以期得到較佳的熱電效能。 所使用之分析儀器有X光光電子能譜分析儀、X光繞射量測儀、場發射掃描式電子顯微鏡、霍爾效應量測儀以及自組裝的熱電量測系統作為分析儀器,分別量測成份、結晶性質、橫截面、表面形貌、電性以及Seebeck係數等特性。 X光光電子能譜儀實驗結果顯示,鑲埋四顆鍺粒之矽靶,可得到Si0.8Ge0.2成分比例的熱電薄膜,由XRD與FE-SEM結果顯示退火溫度在100℃至500℃時退火溫度未發生結晶,600℃時開始有團聚現象產生,至700℃時有結晶性產生,800℃退火觀察到結晶性更加明顯可知退火溫度上升結晶性也隨之增加,900℃退火觀察表面形貌發現結晶上層有氧化層的生成,由霍爾效應量測之電性質的結果發現退火溫度600℃時導電率最好,700℃時阻抗上升與氧化層開始生成有關,矽鍺薄膜Seebeck係數最大值出現在退火溫度600℃時65.48 mV/K,功率因子最大值出現在600℃時為3.06×10-4 W/K2m。
In this study, Silicon-germanium thin film were prepared on N-type Silicon wafer by RF-Sputter. The sputtering target was Si target mounting Ge pieces(Ge size: Diameter:5mm × Thickness :3mm;amount 1 pcs,2 pcs and 4 pcs), which finding the components of Si0.8Ge0.2 , an annealing process for the crystallization of SiGe film was conducted, discussing thermoelectric influence with crystal structure and physics, expecting to improve thermoelectric effect. The composition, crystal, profile, plane view, surface morphology, Electrical Properties and Seebeck coefficient were analyzed with X-ray Photoelectron Spectroscope(XPS), X-ray Diffractometer, Field Emission Scanning Electron Microscopy, Hall effect and assemble. The X-ray Photoelectron Spectroscope showed the result four set Ge mounting into Si composition Si0.8Ge0.2 , The XRD and FE-SEM showed the result SiGe thin film were amorphous after annealing temperature at 100℃ to 500℃, The SiGe thin film occur cluster at 600℃, The SiGe thin film was crystallized when annealed at 700℃, With increasing annealing temperature the crystallization of the thin film progressed, SiGe thin film crystallization more distinct at 800℃, with increasing annealing temperature , the crystallization of the films progressed, The SiGe thin film observe oxidation layer on the SiGe thin film at 900℃, The SiGe thin film annealed at 600℃ showed the SiGe thin film maximum Seebeck coefficient of 65mV/K and the maximum power factor of 3.06×10-4 W/K2m.
URI: http://hdl.handle.net/11455/10791
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.