Please use this identifier to cite or link to this item:
標題: 以化成處理法在AZ91D鎂合金球表面形成層狀雙層氫氧化物之核心-殼層(core-shell)結構及此core-shell材料移除水中氟離子及硫酸根離子之研究
Chemical conversion treatment for the formation of Mg, Al-hydrotalcite/Mg alloy core-shell structure and the application of the core-shell structure on removing fluoride ions and sulfate ions from aqueous solution
作者: 董亦淞
Tung, Yi-Sung
關鍵字: core-shell structure
Cl-intercalated Mg,Al-hydrotalcite
chemical conversion treatment
Ion exchange
出版社: 材料科學與工程學系所
引用: REFERENCES 1. F. Cavani, F. Trifiro and A. Vaccari, Catalysis Today, 1991, 11, 173-301. 2. U. Olsbye, D. Akporiaye, E. Rytter, M. Rønnekleiv and E. Tangstad, Applied Catalysis A: General, 2002, 224, 39-49. 3. H. C. Greenwell, P. J. Holliman, W. Jones and B. V. Velasco, Catalysis Today, 2006, 114, 397-402. 4. K. Okamoto, N. Iyi and T. Sasaki, Applied Clay Science, 2007, 37, 23-31. 5. M. Adachi-Pagano, C. Forano and J. P. Besse, Journal of Materials Chemistry, 2003, 13, 1988-1993. 6. M. Darder, M. Lopez-Blanco, P. Aranda, F. Leroux and E. Ruiz-Hitzky, Chem. Mater, 2005, 17, 1969-1977. 7. J. H. Choy, J. M. Oh, M. Park, K. M. Sohn and J. W. Kim, Advanced Materials, 2004, 16, 1181-1183. 8. B. Sels, D. De Vos, M. Buntinx, F. Pierard, A. Kirsch-De Mesmaeker and P. Jacobs, Nature, 1999, 400, 855-857. 9. E. Geraud, V. Prevot, J. Ghanbaja and F. Leroux, Chem. Mater, 2006, 18, 238-240. 10. G. Centi and S. Perathoner, Cattech, 2003, 7, 78-89. 11. J. L. Williams, Catalysis Today, 2001, 69, 3-9. 12. G. Centi and S. Perathoner, Catalysis Today, 2003, 79-80, 3-13. 13. V. Meille, Applied Catalysis A, General, 2006, 315, 1-17. 14. Y. Wang, F. Zhang, S. Xu, X. Wang, D. G. Evans and X. Duan, Industrial & Engineering Chemistry Research, 2008, 47, 5746-5750. 15. Z. Lu, F. Zhang, X. Lei, L. Yang, S. Xu and X. Duan, Chemical Engineering Science, 2008, 63, 4055-4062. 16. J. H. Lee, S. W. Rhee and D. Y. Jung, Chemistry of materials, 2006, 18, 4740-4746. 17. K. Okamoto, T. Sasaki, T. Fujita and N. Iyi, Journal of Materials Chemistry, 2006, 16, 1608-1616. 18. E. Gardner, K. M. Huntoon and T. J. Pinnavaia, Advanced Materials, 2001, 13, 1263-1266. 19. J. Liu, Y. Li, X. Huang, G. Li and Z. Li, Advanced Functional Materials, 2008, 18, 1448-1458. 20. J. Liu, X. Huang, Y. Li, K. M. Sulieman, X. He and F. Sun, Journal of physical chemistry. B, Condensed matter, materials, surfaces, interfaces, & biophysical chemistry, 2006, 110, 21865-21872. 21. M. Avedesian and H. Baker, Magnesium and magnesium alloys, Asm Intl, 1999. 22. J. Uan, J. Lin and Y. Tung, Journal of Materials Chemistry, 2010, 20, 761-766. 23. S. Miyata, Clays and Clay minerals, 1983, 31, 305-311. 24. S. Miyata, Clays and Clay minerals, 1980, 28, 50-56. 25. S. Miyata and A. Okada, Clays and Clay minerals, 1977, 25, 14-18. 26. W. T. Reichle, Solid State Ionics, 1986, 22, 135-141. 27. A. Tsujimura, M. Uchida and A. Okuwaki, Journal of hazardous materials, 2007, 143, 582-586. 28. T. Hibino, Y. Yamashita, K. Kosuge and A. Tsunashima, Clays and Clay minerals, 1995, 43, 427-432. 29. H. Tagaya, S. Sato, H. Morioka, J. Kadokawa, M. Karasu and K. Chiba, Chemistry of materials, 1993, 5, 1431-1433. 30. E. Narita, P. Kaviratna and T. J. Pinnavaia, Chemistry Letters, 1991, 20, 805-808. 31. M. Tanaka, I. Park, K. Kuroda and C. Kato, Bulletin of the Chemical Society of Japan, 1989, 62, 3442-3445. 32. T. Sato, H. Fujita, T. Endo, M. Shimada and A. Tsunashima, Reactivity of solids, 1988, 5, 219-228. 33. S. Miyata, Clays and Clay Minerals, 1975, 23, 369-370. 34. D. L. Bish, Bulletin de Mineralogie, 1980, 103, 170-175. 35. L. Lv, J. He, M. Wei, D. G. Evans and Z. Zhou, Water Research, 2007, 41, 1534-1542. 36. L. Lv, J. He, M. Wei, D. G. Evans and X. Duan, Journal of hazardous materials, 2006, 133, 119-128. 37. W. T. Reichle, Solid State Ionics, 1986, 22, 135-141. 38. U. Costantino, F. Marmottini, M. Nocchetti and R. Vivani, European Journal of Inorganic Chemistry, 1998, 1998, 1439-1446. 39. N. Iyi, T. Matsumoto, Y. Kaneko and K. Kitamura, Chemistry of materials, 2004, 16, 2926-2932. 40. C. Sullivan, World Development, 2002, 30, 1195-1210. 41. C. J. Vorosmarty, P. Green, J. Salisbury and R. B. Lammers, Science, 2000, 289, 284-288. 42. E. J. Reardon and Y. Wang, Environmental Science & Technology, 2000, 34, 3247-3253. 43. G. A. Ulrich, G. N. Breit, I. M. Cozzarelli and J. M. Suflita, Environ. Sci. Technol, 2003, 37, 1093-1099. 44. J. Paing, B. Picot and J. P. Sambuco, Water science and technology: a journal of the International Association on Water Pollution Research, 2003, 48, 227. 45. N. Mora-Naranjo, C. Alamar-Provecho, J. Meima, A. Haarstrick and D. C. Hempel, Water science & technology, 2003, 48, 221-227. 46. W. Orem, US Geological Survey Fact Sheet FS, 2004, 109-103. 47. G. C. Compeau and R. Bartha, Appl. Environ. Microbiol., 1985, 50, 498-502. 48. Geneva, 1993. 49. L. Ming, S. Yi and Z. Hua, Fluoride, 1987, 20, 54-63. 50. M. Pourbaix, Corrosion Engineers (Houston, TX, 1974) p, 434. 51. W. Yang, Y. Kim, P. Liu, M. Sahimi and T. Tsotsis, Chemical Engineering Science, 2002, 57, 2945-2953. 52. V. R. L. Constantino and T. J. Pinnavaia, Inorganic Chemistry, 1995, 34, 883-892. 53. A. Botomei, D. Emil, V. Hulea and A. Nastro, Chemical Industry and Chemical Engineering Quarterly, 2006, 12, 225-230. 54. O. Jung, S. Park, K. Kim and H. Jang, Inorg. Chem, 1998, 37, 5781-5785.
摘要: 本研究以二氧化碳製備HCO3– /CO32–水溶液為化成處理液。於球狀AZ91D鎂合金表面生長一層Mg,Al-CO32--hydrotalcite (Mg6Al2(OH)16CO3‧4H2O)皮膜,而後將表面具Mg,Al-CO32–hydrotalcite的鎂合金球再浸置於適當pH值的氯化鈉溶液以形成Mg,Al-Cl -hydrotalcite的化成皮膜,最終製作成以鎂合金材料為核心(core),而其周圍是Mg,Al-Cl -hydrotalcite的化成皮膜之「核心-殼層」結構 (core-shell structure)。在利用此皮膜進行陰離子(氟離子(F )以及硫酸根離子(SO42-))吸附實驗,以期達到快速改善水中陰離子污染之目的。實驗顯示若殼層(shell)為Mg,Al-CO32--hydrotalcite,則進行氟離子(F )吸收實驗時,需2小時以上才能達到84%吸收率;而硫酸根離子吸收實驗結果則亦需2小時以上才能達到85%吸收率。若以Mg,Al-Cl--hydrotalcite為殼層,進行氟離子及硫酸根離子吸收實驗,只需5分鐘即可達到99%吸收率。並且以Mg,Al-Cl--hydrotalcite為殼層進行硫酸根離子吸收,符合硫酸根離子於環境上標準(原始淡水沼澤地硫酸根離子濃度1ppm以下);另外以Mg,Al-Cl--hydrotalcite為殼層進行氟離子吸收也符合世界衛生組織(WHO)在飲用水的指標(<1.5 ppm)。本研究著重於新的層插(intercalation)方法之建立。而「核心-殼層結構 (core-shell structure)」的鎂合金核心(core)扮演重要角色,除提供鎂離子及鋁離子外,亦有自動調節溶液中pH之效。
This work describes a novel method to achieve direct formation of highly-oriented Mg-Al LDH on Mg-Al-Zn spherical alloy in aqueous HCO3-/CO32- solution of pH 4.3 at 50 oC. When Mg-Al-Zn spherical alloy sample was immersed in the aqueous HCO3-/CO32-, the surface of the Mg sample corroded. In addition to raising the solution pH around the surface, the corrosion released divalent and trivalent metal cations in the solution. Experimental results indicate that a core-shell structure with a spherical Mg alloy as the core and an Mg-Al LDH film as the shell was fabricated in a relatively short time (30 min). Moreover, chemical analysis data suggest that the chemical formula of the Mg-Al LDH on the the Mg-Al LDH shell on the spherical Mg alloy core was Mg6.65Zn0.04Al2(OH)17.38CO3‧mH2O (LDH/Mg ball). We found that the addition of NaCl dramatically enhanced the deintercalation of carbonate ions by appropriate HCl solution, forming the Mg-Al-Cl- LDH on the spherical Mg alloy. Eventually produced by Mg alloy material for the core, and its surrounded by Mg-Al-Cl- LDH of the conversion coating of the &quot;core - shell&quot; structure. The potential for removing anionic pollutants such as SO32- and F- from Mg-Al-Cl- LDH on the spherical Mg alloy has been studied. This work investigates the removal of the fluoride ions from an aqueous solution by using Mg-Al-Cl- LDH on the spherical Mg alloy (LDH/Mg ball_pH1.5). Experimentally, residual sulfate concentration decreased to 0.9 ppm with an initial concentration of 50 ppm, which satisfies environmental protection issue, pristine areas of the freshwater Everglades have low concentrations of sulfate in surface water, typically 1 part per million (ppm) or less. On the other hand, this work also investigates the removal of the fluoride ions from an aqueous solution by using Mg-Al-Cl- LDH. On the other hand, residual fluoride concentration decreased to 0.59 ppm with an initial concentration of 50 ppm, which satisfies World Health Organization (WHO) guidelines for drinking water quality.
Appears in Collections:材料科學與工程學系



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.