Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10798
標題: 利用氮化鋁犧牲緩衝層與圖案化基板應用於氮化銦鎵發光二極體之化學基板剝離技術
An AlN Sacrificial Buffer Layer Inserted into the InGaN Light Emitting Diode on Patterned Sapphire Substrate for a Chemical Lift-Off Process
作者: 王桂妙
Wang, Guei-Miao
關鍵字: InGaN LED
化學剝離
Chemical lift-off
AlN sacrificial layer
氮化鋁犧牲層
氮化銦鎵發光二極體
出版社: 材料科學與工程學系所
引用: Reference [1] H. J. Round, “A note on carborundum,” Electrical world, vol.49, no.6, pp.309, (1907). [2] H. Welker, Z. Naturforsch. Vol. A, No. 7, pp. 744, (1952). [3] R. R. Bradley, and R. M. Ash, “Metalorganic chemical vapour deposition of junction isolated GaAlAs/GaAs LED structures”, J. Crystal Growth, vol. 77, p. 629, (1986). [4] C. P. Kuo, R. M. Fletcher, T. D. Osentowski, M. C. Lardizabal, M. G., Craford, and V. M. Robbins, "High performance AlInGaP visible light emitting diodes", Appl. Phys. Lett. 57, 2937-2939 (1990). [5] H. Sugawara, M. ishikawa, and G. Hatakoshi, “High-efficiency InGaAIP/GaAs visible light-emitting diodes”, Appl. Phys. Lett. 58, 1010 (1991). [6] Shuji Nakamura, Senoh M., and Mukia T., “P-GaN/n-InGaN/GaN double-heterostructure blue-light-emitting diodes”, Jpn. J. Appl. Phys. 32, L8 (1993). [7] Shuji Nakamura, Senoh M., and Mukia T., “High-power InGaN/GaN double-heterostructure violet light-emitting diodes”, Appl. Phys. Lett. 62, 2390 (1993). [8] Shuji Nakamura, Mukia T., and Senoh M., “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes”, Appl. Phys. Lett. 64, 1687 (1994). [9] E. F. Schubert, “Light-Emitting Diodes” (Cambridge University Press, 2003). [10] K. Tadatomo, H. Okagawa, Y. Ohuchi, T. Tsunekawa, Y. Imada, M. Kato, and T. Taguchi, “High output power InGaN ultraviolet light-emitting diodes fabricated on patterned substrates using metalorganic vapor phase epitaxy”, Jpn. J. Appl. Phys. 40, p.L583-585 (2001). [11] A. David, T. Fujii, E. Matioli, R. Sharma, K. McGroddy, S. Nakamura, S. P. Denbaars, C. Weisbuch, and H. Benisty, “GaN light-emitting diodes with Archiemdean lattice photonic crystals”, Appl. Phys. Lett. 88, 073510 (2006). [12] H. K. Cho, J. Jang, J. H. Choi, J. Choi, J. Kim, J. S. Lee, B. Lee, Y. H. Choe, K. D. Lee, S. H. Kim, K. Lee, S. K. Kim, and Y. H. Lee, "Light extraction enhancement from nano-imprinted photonic crystal GaN-based blue light-emitting diodes”, Opt. Express 14, 8654 (2006). [13] Hyung Gu Kim, Min Gyu Na, Hyun Kyu Kim, Hee Yun Kim, Jae Hyoung Ryu, Tran Viet Cuong, and Chang-Hee Hong, “Effect of periodic deflector embedded in InGaN/GaN light emitting diode”, Appl. Phys. Lett. 90, 261117 (2007). [14] D. W. Kim, H. Y. Lee, M. C. Yoo, and G. Y. Yeom, “Highly efficient vertical laser-liftoff GaN-based light-emitting diodes formed by optimization of the cathode structure”, Appl. Phys. Lett. 86, 052108-1-3 (2005). [15] Kim S-K, Cho H K, Bae D K, Lee J S, Park H-G and Lee Y-H, “Efficient GaN slab vertical light-emitting diode covered with a patterned high-index layer”, Appl. Phys. Lett. 92, 241118-1-3 (2008). [16] M. K. Kelly, O. Ambacher, B. Dahlheimer, G. Groos, R. Dimitrov, H. Angerer, and M. Stutzmann , “ Optical patterning of GaN films”, Appl. Phys. Lett. 69, 1749 (1996). [17] Yewchung Sermon Wu, Ji-Hao Cheng, and Wei Chih Peng, “Effects of laser sources on the reverse-bias leakages of laser lift-off GaN-based light-emitting diodes”, Appl. Phys. Lett. 90, 251110 (2007). [18] H. Goto, S. W. Lee, H. J. Lee, H.-J. Lee, J. S. Ha, M. W. Cho, and T. Yao, “Chemical lift-off of GaN epitaxial films grown on c-sapphire substrates with CrN buffer layers”, Phys. Status Solidi C 5 1659 (2008). [19] D. J. Rogers, F. Hosseini Teherani, A. Ougazzaden, S. Gautier, L. Divay, A. Lusson, O. Durand, F. Wyczisk, G. Garry, T. Monteiro, M. R. Correira, M. Peres, A. Neves, D. McGrouther, J. N. Chapman, and M. Razeghi, “Use of ZnO thin films as sacrificial templates for metal organic vapor phase epitaxy and chemical lift-off of GaN”, Appl. Phys. Lett. 91, 071120 (2007). [20] J. Park, K. M. Song, S. R. Jeon, J. H. Baek, and S. W. Ryu, “Doping selective lateral electrochemical etching of GaN for chemical lift-off”, Appl. Phys. Lett. 94, 221907 (2009). [21] J.-S. Ha, S. W. Lee, H.-J. Lee, H.-J. Lee, S. H. Lee, H. Goto, T. Kato, K. Fujii, M. W. Cho, and T. Yao, “The Fabrication of Vertical Light-Emitting Diodes Using Chemical Lift-Off Process”, IEEE Photonics Technol. Lett. 20, 175 (2008). [22] Elena R. Dobrovinskaya, Leonid A. Lytvynov, and Valerian Pishchik., “Sapphire: material, manufacturing, applications”. [23] W.E. LEE and K.P.D. LAGERLOF, “Structural and Electron Diffraction Data for Sapphire (α-Al2O3)”, Journal of Electron Microscopy Technique 2, 247-258 (1985). [24] H. Cho, D.C. Hays, C.B. Vartuli, S.J. Pearton, C.R. Abernathy, J.D. MacKenzie, F. Ren, and J.C. Zolper, “Wet chemical etching survey of III-nitrides”, Mater. Res. Soc. Symp. Proc. 483, 265 (1998). [25] D. Li, M. Sumiya, K. Yoshimura, Y. Suzuki, Y. Fukuda, and S. Fuke, “Characteristics of the GaN Polar surface during an Etching Process in KOH Solution”, Phys. Status Solidi A 180, 357 (2000). [26] D. Li, M. Sumiya, S. Fuke, D. Yang, D. Que, Y. Suzuki, and Y. Fukuda, “Selective etching of GaN polar surface in potassium hydroxide solution studied by x-ray photoelectron spectroscopy”, J. Appl. Phys. 90, 4219 (2001). [27] D. S. Wuu, W. K. Wang, K. S. Wen, S. C. Huang, S. H. Lin, S. Y. Huang, C. F. Lin, and R. H. Horng, “Defect reduction and efficiency improvement of near-ultraviolet emitters via laterally overgrown GaN on a GaN/patterned sapphire template” Appl. Phys. Lett. 89, 161105 (2006). [28] J. H. Lee, N. S. Kim, D. Y. Lee, and J. H. Lee, “Effect of Residual Stress and Sidewall Emission of InGaN-Based LED by Varying Sapphire Substrate Thickness,” IEEE Photonics Technol. Lett. 21, 1151 (2009). [29] S. C. Hsu, B. J. Pong, W. H. Li, T. E. Beechem, S. Graham, and C. Y. Liu, “Stress relaxation in GaN by transfer bonding on Si substrates,” Appl. Phys. Lett. 91, 251114 (2007). [30] J. H. Cheng, Y. S. Wu, W. C. Liao, and B. W. Lin, “Improved crystal quality and performance of GaN-based light-emitting diodes by decreasing the slanted angle of patterned sapphire,” Appl. Phys. Lett. 96, 051109 (2010). [31] C. C. Pan, C. H. Hsieh, C. W. Lin, and J. I. Chyi, “Light output improvement of InGaN ultraviolet light-emitting diodes by using wet-etched stripe-patterned sapphire substrates,” J. Appl. Phys. 102, 084503 (2007). [32] H. M. Ng, N. G. Weimann, and A. Chowdhury, “GaN nanotip pyramids formed by anisotropic etching”, Appl. Phys. Lett. 94, 650 (2002). [33] J. H. Lee, D. Y. Lee, B. W. Oh, and J. H. Lee, “Comparison of InGaN-Based LEDs Grown on Conventional Sapphire and Cone-Shape-Patterned Sapphire Substrate,” IEEE Trans. Electron Devices 57, 15 (2010).
摘要: 在本論文中,我們利用氮化鋁犧牲緩衝層與兩種圖案化的藍寶石基板應用於氮化銦鎵發光二極體之化學基板剝離技術。 第一種氮化銦鎵發光二極體是成長在有金字塔形狀的藍寶石基板上。在發光二極體的磊晶成長完之後,可以發現在圖案化藍寶石基板和氮化鎵磊晶層的介面之間有空氣空孔,氫氧化鉀溶液藉由這個空氣空孔蝕刻氮化鋁緩衝層,增加側向蝕刻速率。從被剝離100微米寬度的發光二極體晶粒上,可以發現氮化鋁緩衝層的側向蝕刻速率是每分鐘10微米。在被剝離的發光二極體晶粒表面,可以發現從藍寶石基板轉印過來的三角形孔洞及六角形的空氣空孔。在顯微光激螢光的光譜中,可以發現被剝離的發光二極體晶粒比還沒被剝離的發光二極體晶粒的光激螢光波峰位置的波長較短。這個現象是因為在氮化鎵磊晶層和藍寶石基板之間的應力釋放所造成的。 第二種氮化銦鎵發光二極體是成長在有截面三角形條狀的藍寶石基板上。在被剝離的氮化鎵磊晶上,可以發現有兩個穩定晶面終止的V形狀溝槽。在顯微光激螢光的光譜中,我們也可以發現被剝離的發光二極體晶粒比還沒被剝離的發光二極體晶粒的光激螢光波峰位置的波長較短。還沒被剝離之前的氮化鎵磊晶層所激發出來的光激螢光最高強度的波長位置在445.8奈米,而被剝離最高強度的波長位置在440.7奈米。我們可以利用化學剝離的方式來製造出獨立的發光二極體,發光的波段在453奈米。 我們可以利用氮化鋁的緩衝層當作犧牲層,再利用熱的氫氧化鉀蝕刻這層犧牲層以達到化學剝離的目的。這種方式可以取代傳統的雷射剝離方式來製造垂直式的發光二極體。 我們也利用這種化學蝕刻技術側向蝕刻氮化銦鎵發光二極體。這個氮化銦鎵的發光二極體是成長在有截面三角形條狀的藍寶石基板上。當氮化鎵磊晶層成長在圖案化的藍寶石基板後,可以發現在V形的條狀空氣空孔溝槽有較高的側蝕速率。在由下往上的氮化鎵N晶面濕式蝕刻後,形成了氮化鎵穩定晶面{10(11) ¯} 。我們發現經過溼式蝕刻的發光二極體的亮度提升65%且有較小的發散角。形成在氮化鎵和圖案化藍寶石基板介面之間的菱形空氣空孔提供一個較高的光取出路徑。
We use chemical lift-off technology to lift-off GaN epilayer grown on AlN sacrificial from two kinds of pattern sapphire. The first type is InGaN-based light-emitting diodes (LEDs) grown on triangle-shaped patterned sapphire substrates. After the epitaxial growth, an air-void structure was observed at the patterned region on the sapphire substrate that provided an empty space to increase the lateral etching rate of the AlN buffer layer. The lateral etching rate of the AlN buffer layer was calculated at 10μm/min for the 100-μm-width LED chip that was lifted off from the sapphire substrate. A triangular-shaped hole structure and a hexagonal-shaped air-void structure were observed on the lift-off GaN surface that was transferred from the patterned sapphire substrate. Comparing to the LED/sapphire structure, a peak wavelength blueshift phenomenon of the micro-photoluminescence spectra was observed on the lifted off LED chip caused by the release of a compressive strain at the GaN/sapphire substrate interface. The second type is an epitaxial layer of an InGaN light-emitting diode (LED) structure grown a truncated-triangle-striped patterned-sapphire substrate. A crystallographic stable and terminated V-shaped GaN grooved pattern was observed on the lift-off GaN surface. The peak wavelength blueshift phenomenon of the micro-photoluminescence spectrum was also observed on the lift-off LED epitaxial layer (440.7 nm) compared with the LED/sapphire structure (445.8 nm). The free-standing LED epitaxial layer with a 453nm electroluminescence emission spectrum was realized through a CLO process The chemical lift-off process was achieved by using an AlN buffer layer as a sacrificial layer in a hot potassium hydroxide solution, which has the potential to replace the traditional laser lift-off process for vertical LED applications. We also use this chemical etching technology to lateral etch InGaN light-emitting diodes (LED) which were grown on a truncated-triangle-striped patterned sapphire substrate. After growing a GaN layer on the patterned-sapphire substrate, it was observed that a higher lateral growth process formed a V-shaped-striped air-void structure. After a bottom-up N-face wet etching process on a GaN layer, the stable crystallographic etching planes were formed as the GaN {10(11) ¯} planes. We found out that treated LED structures had 65% light enhancements and smaller divergent angles. A rhombus-like air-void structure formed at GaN/patterned-sapphire interface provided a high light extraction process.
URI: http://hdl.handle.net/11455/10798
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.