Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10802
DC FieldValueLanguage
dc.contributor顏秀崗zh_TW
dc.contributorShiow-Kang Yenen_US
dc.contributor鄒裕民zh_TW
dc.contributor林招松zh_TW
dc.contributor王建義zh_TW
dc.contributorYu-Min Tzouen_US
dc.contributorChao-Sung Linen_US
dc.contributorJian-Yih Wangen_US
dc.contributor.advisor汪俊延zh_TW
dc.contributor.advisorJun-Yen Uanen_US
dc.contributor.author林孟昌zh_TW
dc.contributor.authorLin, Meng-Changen_US
dc.contributor.other中興大學zh_TW
dc.date2011zh_TW
dc.date.accessioned2014-06-06T06:46:29Z-
dc.date.available2014-06-06T06:46:29Z-
dc.identifier.citation1. Mordike, B. L.; Ebert, T., Magnesium: Properties -- applications -- potential. Materials Science and Engineering A 2001, 302 (1), 37-45. 2. VanFleteren, R., Magnesium for automotive applications. Advanced Materials and Processes 1996, 149 (5), 33-34. 3. Haferkamp, H.; Boehm, R.; Holzkamp, U.; Jaschik, C.; Kaese, V.; Niemeyer, M., Alloy development, processing and applications in magnesium lithium alloys. Materials Transactions 2001, 42 (7), 1160-1166. 4. Ninomiya, R.; Miyake, K., A study of superlight and superplastic Mg-Li based alloys. Journal of Japan Institute of Light Metals 2001, 51 (10), 509-513. 5. Jackson, J. H.; Frost, P. D.; Loonam, A. C.; Eastwood, L. W.; Lorig, C. H., Magnesium-lithium base alloys preparation, fabrication, and general characteristics. Transactions AIME 1949, 185, 149-168. 6. Shimizu, M.; Takeuchi, H., Damping capacity of Mg-Al and Mg-Li-Al alloy castings. International Journal of Cast Metals Research 1997, 10 (3), 159-163. 7. Aida, T.; Hatta, H.; Ramesh, C.; Kamado, S.; Kojima, Y., Workability and mechanical properties of lighter-than-water Mg-Li alloy. In Proceedings of the Third International Magnesium Conference, Lorimer, G. W., Ed. The Institute of Materials, London, UK: 1997; pp 143-152. 8. Sahoo, M.; Atkinson, J. T. N., Magnesium-lithium-alloys — constitution and fabrication for use in batteries. Journal of Materials Science 1982, 17 (12), 3564-3574. 9. Sivashanmugam, A.; Prem kumar, T.; Renganathan, N. G.; Gopukumar, S., Performance of a magnesium-lithium alloy as an anode for magnesium batteries. Journal of Applied Electrochemistry 2004, 34 (11), 1135-1139. 10. Kim, D. H.; Han, Y. S.; Lee, H. I.; Cantor, B., Structure and decomposition behavior of Mg-Li-Al alloys. Scripta Metallurgica et Materialia 1994, 31 (7), 819-824. 11. Chiu, C. H.; Wang, J. Y.; Wu, H. Y., Microstructural characterization of a Mg-9%Li-1%Zn alloy. Materials Transactions 2006, 47 (4), 966-970. 12. Smolinski, J., Electrolytic deposition and diffusion of lithium into magnesium. Journal of Applied Chemistry 1956, 6 (4), 180-186. 13. Meng, L.; Zheng, X., Tension characteristics of notched specimens for Al-Li-Cu-Zr alloy sheets with various cerium contents. Metallurgical and Materials Transactions A 1996, 27 (10), 3089-3094. 14. Yoshimura, R.; Konno, T. J.; Abe, E.; Hiraga, K., Transmission electron microscopy study of the early stage of precipitates in aged Al-Li-Cu alloys. Acta Materialia 2003, 51 (10), 2891-2903. 15. Kim, J.-M.; Seong, K.-D.; Jun, J.-H.; Shin, K.; Kim, K.-T.; Jung, W.-J., Microstructural characteristics and mechanical properties of Al-2.5wt.%Li-1.2wt.%Cu-xMg alloys. Journal of Alloys and Compounds 2007, 434-435, 324-326. 16. Zhu, X.; Schoenitz, M.; Dreizin, E. L., Mechanically alloyed Al-Li powders. Journal of Alloys and Compounds 2007, 432 (1-2), 111-115. 17. Ishihara, K. N.; Kubo, F.; Irie, K.; Shichi, K.; Yamasue, E.; Okumura, H., Mechanical alloying of lithium-base systems. Journal of Alloys and Compounds 2007, 434-435, 542-545. 18. Watanabe, Y.; Toyoshima, M.; Itoh, K., High purity aluminum-lithium master alloy by molten salt electrolysis. Le Journal de Physique Colloques 1987, 48 (C3), C3-85-C3-91. 19. Lin, M. C.; Tsai, C. Y.; Uan, J. Y., Converting hcp Mg-Al-Zn alloy into bcc Mg-Li-Al-Zn alloy by electrolytic deposition and diffusion of reduced lithium atoms in a molten salt electrolyte LiCl-KCl. Scripta Materialia 2007, 56 (7), 597-600. 20. Murray, J. L., Al-Mg (aluminium-magnesium). In Binary Alloy Phase Diagrams, second edition, Massalski, T. B.; Okamoto, H.; Subramanian, P. R.; Kacprzak, L., Eds. ASM International, Materials Park, Ohio, USA: 1990; Vol. 1, pp 169-171. 21. Smolinski, J.; Hannam, J. C.; Leach, A. L., An electrolytic method for the direct production of magnesium lithium alloys from lithium chloride. Journal of Applied Chemistry 1956, 6 (4), 187-196. 22. Avedesian, M. M.; Baker, H., ASM Special Handbook: Magnesium and Magnesium Alloys. ASM International, Materials Park, Ohio, USA: 1999. 23. Wang, Q. D.; Chen, W. D.; Zeng, X. Q.; Lu, Y. Z.; Ding, W. J.; Zhu, Y. P.; Xu, X. P.; Mabuchi, M., Effects of Ca addition on the microstructure and mechanical properties of AZ91magnesium alloy. Journal of Materials Science 2001, 36 (12), 3035-3040. 24. McAlister, A. J., Al-Li (aluminium-lithium). In Binary Alloy Phase Diagrams, second edition, Massalski, T. B.; Okamoto, H.; Subramanian, P. R.; Kacprzak, L., Eds. ASM International, Materials Park, Ohio, USA: 1990; Vol. 1, pp 167-168. 25. Berezina, S. I.; Bergman, A. G.; Bakumskaya, E. L., Ternary reciprocal system of lithium and potassium fluorides and chlorides. Russian Journal of Inorganic Chemistry 1963, 8, 1118-1120. 26. Hamer, W. J.; Malmberg, M. S.; Rubin, B., Theoretical electromotive forces for cells containing a single solid or molten chloride electrolyte. Journal of the Electrochemical Society 1956, 103 (1), 8-16. 27. Glicksman, M. E., Diffusion in Solids: Field Theory, Solid State Principles and Applications. John Wiley & Sons Inc.: New York, USA, 2000. 28. Williams, R. A., Handbook of the Atomic Elements. Philosophical Library: New York, USA, 1970. 29. Pelton, A. D., K-Mg (potassium-magnesium). In Binary Alloy Phase Diagrams, second edition, Massalski, T. B.; Okamoto, H.; Subramanian, P. R.; Kacprzak, L., Eds. ASM International, Materials Park, Ohio, USA: 1990; Vol. 3, pp 2374-2375. 30. Song, G. S.; Staiger, M.; Kral, M., Some new characteristics of the strengthening phase in [beta]-phase magnesium-lithium alloys containing aluminum and beryllium. Materials Science and Engineering A 2004, 371 (1-2), 371-376. 31. Sangster, J.; Pelton, A. D., Al-K (aluminium-potassium). In Binary Alloy Phase Diagrams, second edition, Massalski, T. B.; Okamoto, H.; Subramanian, P. R.; Kacprzak, L., Eds. ASM International, Materials Park, Ohio, USA: 1990; Vol. 1, p 165. 32. Robinson, J. L., Magnesium cells. In The Primary Battery, Heise, G. W.; Cahoon, N. C., Eds. John Wiley & Sons Inc.: New York, USA, 1976; Vol. Ⅱ, pp 149-169. 33. Gregory, T. D.; Hoffman, R. J.; Winterton, R. C., Nonaqueous electrochemistry of magnesium. Journal of the Electrochemical Society 1990, 137 (3), 775-780. 34. Aurbach, D.; Lu, Z.; Schechter, A.; Gofer, Y.; Gizbar, H.; Turgeman, R.; Cohen, Y.; Moshkovich, M.; Levi, E., Prototype systems for rechargeable magnesium batteries. Nature 2000, 407 (6805), 724-727. 35. Aurbach, D.; Gofer, Y.; Lu, Z.; Schechter, A.; Chusid, O.; Gizbar, H.; Cohen, Y.; Ashkenazi, V.; Moshkovich, M.; Turgeman, R.; Levi, E., A short review on the comparison between Li battery systems and rechargeable magnesium battery technology. Journal of Power Sources 2001, 97-98, 28-32. 36. Yoo, M. H., Slip, twinning, and fracture in hexagonal close-packed metals. Metallurgical and Materials Transactions A 1981, 12 (3), 409-418. 37. Chusid, O.; Gofer, Y.; Gizbar, H.; Vestfrid, Y.; Levi, E.; Aurbach, D.; Riech, I., Solid-state rechargeable magnesium batteries. Advanced Materials 2003, 15 (7-8), 627-630. 38. Nayeb-Hashemi, A. A.; Pelton, A. D.; Clark, J. B., Li-Mg (lithium-magnesium). In Binary Alloy Phase Diagrams, second edition, Massalski, T. B.; Okamoto, H.; Subramanian, P. R.; Kacprzak, L., Eds. ASM International, Materials Park, Ohio, USA: 1990; Vol. 3, pp 2444-2445. 39. Song, Y.; Shan, D.; Chen, R.; Zhang, F.; Han, E. H., Formation mechanism of phosphate conversion film on Mg-8.8Li alloy. Corrosion Science 2009, 51 (1), 62-69. 40. Song, Y.; Shan, D.; Chen, R.; Han, E. H., Corrosion characterization of Mg-8Li alloy in NaCl solution. Corrosion Science 2009, 51 (5), 1087-1094. 41. Alamo, A.; Banchik, A. D., Precipitation phenomena in the Mg-31 at% Li-1 at% Al alloy. Journal of Materials Science 1980, 15 (1), 222-229. 42. Haferkamp, H.; Bach, F.-W.; Bohling, P.; Juchmann, P., Production, processing and properties of lithium-containing Mg-alloys. In Proceedings of the Third International Magnesium Conference, Lorimer, G. W., Ed. The Institute of Materials, London, UK: 1997; pp 177-192. 43. Cao, D.; Wu, L.; Sun, Y.; Wang, G.; Lv, Y., Electrochemical behavior of Mg-Li, Mg-Li-Al and Mg-Li-Al-Ce in sodium chloride solution. Journal of Power Sources 2008, 177 (2), 624-630. 44. Hara, N.; Kobayashi, Y.; Kagaya, D.; Akao, N., Formation and breakdown of surface films on magnesium and its alloys in aqueous solutions. Corrosion Science 2007, 49 (1), 166-175. 45. Pardo, A.; Merino, M. C.; Coy, A. E.; Arrabal, R.; Viejo, F.; Matykina, E., Corrosion behaviour of magnesium/aluminium alloys in 3.5 wt.% NaCl. Corrosion Science 2008, 50 (3), 823-834. 46. Thirunakaran, R.; Vasudevan, S.; Sivashanmugam, A.; Kumar, G.; Muniyandi, N., 1-Nitronapthalene as a cathode material for magnesium reserve batteries. Journal of Power Sources 1996, 58 (2), 213-215. 47. Vuorilehto, K., An environmentally friendly water-activated manganese dioxide battery. Journal of Applied Electrochemistry 2003, 33 (1), 15-21. 48. Jones, D. A., Principles and Prevention of Corrosion, second edition. Prentice Hall, New Jersey, USA: 1996. 49. Heise, G. W., Historical introduction. In The Primary Battery, Heise, G. W.; Cahoon, N. C., Eds. John Wiley & Sons Inc.: New York, USA, 1971; Vol. Ⅰ, pp 1-58. 50. Chen, Y. Y.; Duval, T.; Hung, U. D.; Yeh, J. W.; Shih, H. C., Microstructure and electrochemical properties of high entropy alloys--a comparison with type-304 stainless steel. Corrosion Science 2005, 47 (9), 2257-2279. 51. Berndt, D., Electrochemical energy storage. In Battery Technology Handbook, second edition, Kiehne, H. A., Ed. Marcel Dekker Inc., New York, USA: 2003; pp 42-43. 52. Wilcock, W. S. D.; Kauffman, P. C., Development of a seawater battery for deep-water applications. Journal of Power Sources 1997, 66 (1-2), 71-75. 53. Song, G.; Atrens, A.; John, D. S.; Wu, X.; Nairn, J., The anodic dissolution of magnesium in chloride and sulphate solutions. Corrosion Science 1997, 39 (10-11), 1981-2004. 54. Zhang, T.; Li, Y.; Wang, F., Roles of [beta] phase in the corrosion process of AZ91D magnesium alloy. Corrosion Science 2006, 48 (5), 1249-1264. 55. Zhou, W.; Shan, D.; Han, E. H.; Ke, W., Structure and formation mechanism of phosphate conversion coating on die-cast AZ91D magnesium alloy. Corrosion Science 2008, 50 (2), 329-337. 56. Niskanen, P.; Sanders Jr., T. H.; Rinker, J. G.; Marek, M., Corrosion of aluminum alloys containing lithium. Corrosion Science 1982, 22 (4), 283-304. 57. Ambat, R.; Aung, N. N.; Zhou, W., Evaluation of microstructural effects on corrosion behaviour of AZ91D magnesium alloy. Corrosion Science 2000, 42 (8), 1433-1455. 58. Grosjean, M. H.; Zidoune, M.; Rou, L.; Huot, J. Y., Hydrogen production via hydrolysis reaction from ball-milled Mg-based materials. International Journal of Hydrogen Energy 2006, 31 (1), 109-119. 59. Taub, I. A.; Roberts, W.; LaGambina, S.; Kustin, K., Mechanism of dihydrogen formation in the magnesium-water reaction. The Journal of Physical Chemistry A 2002, 106 (35), 8070-8078. 60. Lide, D., CRC Handbook of Chemistry and Physics, 73rd edition. CRC press, Florida, USA: 1992. 61. Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D., Handbook of X-ray Photoelectron Spectroscopy. Physical Electronics Inc., Minnesota, USA: 1992. 62. Cavani, F.; Trifirò, F.; Vaccari, A., Hydrotalcite-type anionic clays: preparation, properties and applications. Catalysis Today 1991, 11 (2), 173-301. 63. Khan, A. I.; O''Hare, D., Intercalation chemistry of layered double hydroxides: recent developments and applications. Journal of Materials Chemistry 2002, 12 (11), 3191-3198. 64. Evans, D. G.; Slade, R. C. T., Structural aspects of layered double hydroxides. In Structure and Bonding, Vol.119, Layered Double Hydroxides, Duan, X.; Evans, D. G., Eds. Springer-Verlag, Heidelberg, Berlin: 2006; pp 1-87. 65. Besserguenev, A. V.; Fogg, A. M.; Francis, R. J.; Price, S. J.; O''Hare, D.; Isupov, V. P.; Tolochko, B. P., Synthesis and structure of the gibbsite intercalation compounds [LiAl2(OH)6]X {X = Cl, Br, NO3} and [LiAl2(OH)6]Cl.H2O using synchrotron X-ray and neutron powder diffraction. Chemistry of Materials 1997, 9 (1), 241-247. 66. Wang, S. L.; Hseu, R. J.; Chang, R. R.; Chiang, P. N.; Chen, J. H.; Tzou, Y. M., Adsorption and thermal desorption of Cr(VI) on Li/Al layered double hydroxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2006, 277 (1-3), 8-14. 67. Serna, C. J.; White, J. L.; Hem, S. L., Hydrolysis of aluminum-tri-(sec-butoxide) in ionic and nonionic media. Clays and Clay Minerals 1977, 25 (6), 384-391. 68. Serna, C. J.; Rendon, J. L.; Iglesias, J. E., Crystal-chemical study of layered [Al2Li (OH) 6]+ X--nH20. Clays and Clay Minerals 1982, 30 (3), 180-184. 69. Sissoko, I.; Iyagba, E. T.; Sahai, R.; Biloen, P., Anion intercalation and exchange in Al(OH)3-derived compounds. Journal of Solid State Chemistry 1985, 60 (3), 283-288. 70. Dutta, P. K.; Puri, M., Anion exchange in lithium aluminate hydroxides. The Journal of Physical Chemistry 1989, 93 (1), 376-381. 71. Thiel, J. P.; Chiang, C. K.; Poeppelmeier, K. R., Structure of lithium aluminum hydroxide dihydrate (LiAl2(OH)7.2H2O). Chemistry of Materials 1993, 5 (3), 297-304. 72. Drewien, C. A.; Eatough, M. O.; Tallant, D. R.; Hills, C. R.; Buchheit, R. G., Lithium-aluminum-carbonate-hydroxide hydrate coatings on aluminum alloys: Composition, structure, and processing bath chemistry. Journal of Materials Research 1996, 11 (6), 1507-1513. 73. Thomas, G. S.; Kamath, P. V., The double hydroxide of Al with Li: mechanism of formation and reversible thermal behavior. Materials Research Bulletin 2002, 37 (4), 705-713. 74. Tarasov, K. A.; Isupov, V. P.; Chupakhina, L. E.; O''Hare, D., A time resolved, in-situ X-ray diffraction study of the de-intercalation of anions and lithium cations from [LiAl2(OH)6]nX[middle dot]qH2O (X = Cl-, Br-, NO3-, SO42-). Journal of Materials Chemistry 2004, 14 (9), 1443-1447. 75. Vörösmarty, C. J.; Green, P.; Salisbury, J.; Lammers, R. B., Global water resources: Vulnerability from climate change and population growth. Science 2000, 289 (5477), 284-288. 76. Sullivan, C., Calculating a water poverty index. World Development 2002, 30 (7), 1195-1210. 77. Reardon, E. J.; Wang, Y., A limestone reactor for fluoride removal from wastewaters. Environmental Science & Technology 2000, 34 (15), 3247-3253. 78. Lv, L.; He, J.; Wei, M.; Evans, D. G.; Duan, X., Factors influencing the removal of fluoride from aqueous solution by calcined Mg-Al-CO3 layered double hydroxides. Journal of Hazardous Materials 2006, 133 (1-3), 119-128. 79. Lv, L.; He, J.; Wei, M.; Evans, D. G.; Zhou, Z., Treatment of high fluoride concentration water by MgAl-CO3 layered double hydroxides: Kinetic and equilibrium studies. Water Research 2007, 41 (7), 1534-1542. 80. Leroux, F.; Besse, J. P., Polymer Interleaved Layered Double Hydroxide: A New Emerging Class of Nanocomposites. Chemistry of Materials 2001, 13 (10), 3507-3515. 81. Wang, H. Z.; Leung, D. Y. C.; Leung, M. K. H.; Ni, M., A review on hydrogen production using aluminum and aluminum alloys. Renewable and Sustainable Energy Reviews 2009, 13 (4), 845-853. 82. Shumaker, J. L.; Crofcheck, C.; Tackett, S. A.; Santillan-Jimenez, E.; Morgan, T.; Ji, Y.; Crocker, M.; Toops, T. J., Biodiesel synthesis using calcined layered double hydroxide catalysts. Applied Catalysis B: Environmental 2008, 82 (1-2), 120-130. 83. Chisem, I. C.; Jones, W., Ion-exchange properties of lithium aluminium layered double hydroxides. Journal of Materials Chemistry 1994, 4 (11), 1737-1744. 84. Lueker, T. J.; Dickson, A. G.; Keeling, C. D., Ocean pCO2 calculated from dissolved inorganic carbon, alkalinity, and equations for K1 and K2: validation based on laboratory measurements of CO2 in gas and seawater at equilibrium. Marine Chemistry 2000, 70 (1-3), 105-119. 85. Rudie, A. W.; Hart, P. W., Mineral scale management Part III. Nonprocess elements in the paper industry. TAPPI JOURNAL 2006, 5 (8), 17-23. 86. Moore, K.; Pantoya, M. L.; Son, S. F., Combustion behaviors resulting from bimodal aluminum size distributions in thermites. Journal of Propulsion and Power 2007, 23 (1), 181-185. 87. Peng, Y.; Wang, Y.; Yang, Y.; Dlott, D. D., Simulation of the absorption spectra of nanometallic Al particles with core-shell structure: size-dependent interband transitions. Journal of Nanoparticle Research 12 (3), 777-787. 88. Saif, M. T. A.; Zhang, S.; Haque, A.; Hsia, K. J., Effect of native Al2O3 on the elastic response of nanoscale Al films. Acta Materialia 2002, 50 (11), 2779-2786. 89. Pines, H.; Haag, W. O., Alumina: catalyst and support. I. Alumina, its intrinsic acidity and catalytic activity. Journal of the American Chemical Society 1960, 82 (10), 2471-2483. 90. Shi, B. C.; Davis, B. H., Alcohol dehydration: Mechanism of ether formation using an alumina catalyst. Journal of Catalysis 1995, 157 (2), 359-367. 91. Eränen, K.; Lindfors, L. E.; Klingstedt, F.; Murzin, D. Y., Continuous reduction of NO with octane over a silver/alumina catalyst in oxygen-rich exhaust gases: combined heterogeneous and surface-mediated homogeneous reactions. Journal of Catalysis 2003, 219 (1), 25-40. 92. Meephoka, C.; Chaisuk, C.; Samparnpiboon, P.; Praserthdam, P., Effect of phase composition between nano [gamma]- and [chi]-Al2O3 on Pt/Al2O3 catalyst in CO oxidation. Catalysis Communications 2008, 9 (4), 546-550. 93. Klabunde, K. J., Nanoscale Materials in Chemistry. Wiley Interscience, New York, USA: 2001. 94. Guidelines for Drinking-Water Quality. World Health Organization, Geneva: 1993. 95. Iyi, N.; Matsumoto, T.; Kaneko, Y.; Kitamura, K., Deintercalation of carbonate ions from a hydrotalcite-like compound: enhanced decarbonation using acid-salt mixed solution. Chemistry of Materials 2004, 16 (15), 2926-2932. 96. Miyata, S., Anion-exchange properties of hydrotalcite-like compounds. Clays and Clay Minerals 1983, 31 (4), 305-311. 97. Lin, M. C.; Chang, F. T.; Uan, J. Y., Synthesis of Li-Al-carbonate layered double hydroxide in a metal salt-free system. Journal of Materials Chemistry 2010, 20 (31), 6524-6530. 98. Kottegoda, N. S.; Jones, W., Preparation and Characterisation of Li-Al-glycine Layered Double Hydroxides (LDHs)-Polymer Nanocomposites. Macromolecular Symposia 2005, 222 (1), 65-72. 99. Wong, F.; Buchheit, R. G., Utilizing the structural memory effect of layered double hydroxides for sensing water uptake in organic coatings. Progress in Organic Coatings 2004, 51 (2), 91-102. 100. Feitknecht, W.; Schindler, P., Solubility constants of metal oxides, metal hydroxides and metal hydroxide salts in aqueous solution. Pure and Applied Chemistry 1963, 6, 130-99. 101. Wiebe, R.; Gaddy, V., The solubility of carbon dioxide in water at various temperatures from 12 to 40 and at pressures to 500 atmospheres. Critical phenomena*. Journal of the American Chemical Society 1940, 62 (4), 815-817. 102. Serna, C. J.; Lyons, J. C.; White, J. L.; Hem, S. L., Stabilization of aluminum hydroxide gel by specifically adsorbed carbonate. Journal of Pharmaceutical Sciences 1983, 72 (7), 769-771. 103. Tsukada, T.; Segawa, H.; Yasumori, A.; Okada, K., Crystallinity of boehmite and its effect on the phase transition temperature of alumina. Journal of Materials Chemistry 1999, 9 (2), 549-553. 104. Yoshizawa, Y.; Hirao, K.; Kanzaki, S., Fabrication of low cost fine-grained alumina powders by seeding for high performance sintered bodies. Journal of the European Ceramic Society 2004, 24 (2), 325-330.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/10802-
dc.description.abstractIn this thesis, four parts (Chapter 1 to Chapter 4) of studies involving the preparation and applications of Mg-Li-Al-Zn alloy strips and AlLi intermetallic compound (IMC) by molten salt electrolysis were included. Chapter 1 studies the fabrication of Mg-12Li-2.6Al-0.72Zn (wt.%) alloy strip, Mg-11.9Li-8.5Al-0.57Zn (wt.%) alloy strip and AlLi IMC (19±0.5 wt.% of Li and the rest balanced by Al) in air by electrolysis from LiCl-KCl molten salt at 500 °C. Electrolytic deposition of Li atoms on Mg-Al-Zn alloys and aluminium alloy, and then diffusion of the Li atoms to form the bcc Mg-Li-Al-Zn alloys with ~12 wt.% Li and the AlLi IMC, respectively. Low K concentration (~0.264 wt.% K) in the bcc Mg-11.9Li-8.5Al-0.57Zn alloy strip after the electrolysis process was resulted from 47% atomic size misfit between K and Mg atoms and low solubility of K in Mg matrix. 64% atomic size misfit between K and Al atoms and low solubility of K in Al matrix led to the low K concentration in the AlLi IMC. Chapter 2 investigates the electrochemical and corrosion performance of Mg-Li-Al-Zn anodes with Al compositions of ~3 wt.% and ~9 wt.%. Mg-Li-Al-Zn alloy with ~9 wt.% Al had a relatively negative open-circuit potential and a high discharge voltage in MgCl2 electrolyte, owing to the distribution of numerous AlLi particles in the matrix of the alloy. AlLi particles were believed to transform to Al particles during the corrosion of the Mg-Li-Al-Zn anode. The high-Al anode material exhibited good corrosion performance since a dense and continuous Mg(OH)2/Al composite layer covered the surface of the high-Al anode. Experimentally, increasing the Li+ concentration in the electrolyte improved the corrosion performance of the Mg anode. Chapter 3 describes a novel method based on a metal salt-free system to synthesize a Li-Al-CO3 layered double hydroxide (LDH) by simply adding powdered AlLi IMC to a stirred water bath at ambient temperature and atmosphere. The AlLi powder in the water bath hydrolyzed strongly, subsequently forming an alkaline Al3+- and Li+-containing aqueous solution of pH 12.3. Additionally, dissolution of CO2 gas from the ambient atmosphere into the stirred alkaline solution produced the anion, CO32-, in the solution to form Li-Al-CO3 LDH. Washing in water was unnecessary because metal salts were not used to synthesize the LDH. Notably, transmission electron microscopy (TEM) results indicate that nano-sized Al particles were incorporated on the surface of Li-Al-CO3 LDH flakes. Chemical analysis data suggest that the chemical formula of Li-Al-CO3 LDH was Li0.33Al0.67(CO3)0.17(OH)2. This work also investigates the removal of the fluoride ions from an aqueous solution by using Li-Al-CO3 LDH. Experimentally, residual fluoride concentration decreased to 0.4 ppm with an initial concentration of 20 ppm, which satisfies World Health Organization (WHO) guidelines for drinking water quality. Chapter 4 studies a rapid synthesis method to prepare Li-Al-CO3 layered double hydroxide (LDH) by directly introducing CO2 gas into an alkaline aqueous solution containing Al3+ and Li+. Synthesis time of some minutes was enough to prepare sufficient amount of Li-Al-CO3 LDH. The CO2 gas that dissolved in the alkaline aqueous solution produced CO32- and H+, and thus the pH declining rate of the alkaline solution increased with a higher flow rate of the CO2 gas injecting in the solution. Experimentally, a slow pH declining of the Al3+- and Li+-containing solution favored the production of Li-Al-CO3 LDH. For instance, in the alkaline aqueous (12.34) containing 1070 ppm Al3+ and 594 ppm Li+, applying a CO2 gas with flow rate of 70 ml/min to alter the solution's pH gradually from 12.34 to 6.75 in 180 s could produce Li-Al-CO3 LDH. However, when higher CO2 flow rate (120 ml/min) being used to change the solution's pH from 12.34 to 6.75 in 60 s, the final product was amorphous aluminium hydroxycarbonate. The crystalline Li-Al-CO3 LDH was in situ grown from the alkaline solution prepared herein, therefore saving significant time by bypassing the process of e.g., hydrothermal treatment.en_US
dc.description.tableofcontentsLIST OF CONTENTS ACKNOWLEGMENT I ABSTRACT II LIST OF CONTENTS V LIST OF TABLES VIII LIST OF FIGURES IX CHAPTER 1 Converting hcp Mg-Al-Zn alloy into bcc Mg-Li-Al-Zn alloy and Al alloy into AlLi intermetallic compound by electrolytic deposition and diffusion of reduced lithium atoms in a molten salt electrolyte LiCl/KCl 1 1.1. Introduction 1 1.2. Experimetnal 3 1.3. Results 5 1.4. Discussion 8 1.5. Conclusions 11 CHAPTER 2 Electrochemical behaviour and corrosion performance of Mg-Li-Al-Zn anodes with high Al composition 19 2.1. Introduction 19 2.2. Experimental 21 2.2.1. Preparation of materials 21 2.2.2. Observation of cross-sectional microstructure and X-ray diffraction analysis 21 2.2.3. Open-circuit potential measurement 22 2.2.4. Discharge studies 22 2.2.5. Examination of Mg samples following immersion in electrolyte 24 2.2.6. Measurement of rate of corrosion 25 2.3. Results and discussion 26 2.3.1. Structural and microstructural characterization of Mg alloys 26 2.3.2. Electrochemical test 26 2.3.3. Corrosion performance and microstructural characterization 29 2.4. Conclusions 33 CHAPTER 3 Synthesis of Li-Al-carbonate layered double hydroxide in a metal salt-free system 49 3.1. Introduction 49 3.2. Experimental 51 3.3. Results and discussion 54 3.4. Conclusions 61 CHAPTER 4 Rapid synthesis of Li-Al-CO3 layered double hydroxide by bubbling CO2 through an alkaline Al3+- and Li+-containing solution 71 4.1. Introduction 71 4.2. Experimental 72 4.2.1. Preparation of aqueous solutions containing Al and Li ions 72 4.2.2. Rapid synthesis of Li-Al-CO3 LDH 73 4.2.3. Chacterization 74 4.3. Results and discussion 75 4.4. Conclusions 85 CHAPTER 5 General conclusions 100 REFERENCES 104 APPENDICES 114 LIST OF TABLES Table 1.1. Characteristic parameters of (110), (200) and (211) reflections in the XRD pattern of bcc Mg phase in the Li (JCDPS file) and as-electrolyzed LAZ1291. 12 Table 2.1. Chemical compositions of the Mg alloys. 35 Table 3.1. Indexing of the XRD pattern for Li-Al LDH samples. 63 Table 3.2. Li and Al contents in LDH_1h, LDH_3h and LDH_6h were evaluated by ICP-AES analysis. 64 Table 3.3. C, F, Li and Al contents in LDH_1h and LDH_1h_F10 were evaluated by various elemental analysis methods. 65 Table 4.1. Experimental conditions of different precipitates. 86 Table 4.2. Chemical compositions of different precipitates. 87 LIST OF FIGURES Figure 1.1. Schematic presentation of the electrolytic cell used in this study. 13 Figure 1.2. (a) Low- and (b) high-magnification optical micrograph of as-cast AZ91D alloy (the cathodic material (before electrolysis)), in cross-sectional view; (c) XRD pattern of the as-cast AZ91D alloy. 14 Figure 1.3. Cross-sectional microstructure: (a) after the first step electrolysis; (b) low- and (c) high-magnification optical micrographs of the Mg-Li-Al-Zn strip (obtained from the AZ91D cathode), being fully charged by Li; (d) XRD pattern of the Mg-Li-Al-Zn strip (obtained from the AZ91D cathode). 15 Figure 1.4. (a) LAZ1291 strip (2.3 mm) before rolling and the foil (0.2 mm) after rolling; (b) optical microstructure of the as-rolled LAZ1291 foil and (c) XRD pattern of the as-rolled LAZ1291 foil. 16 Figure 1.5. The effect of initial strain rate on the tensile properties of the as-rolled and annealed LAZ1291 foil. (The elongation of die-cast AZ91D alloy was ~3%22,23). 17 Figure 1.6. (a) Bulk AlLi IMC, showing the brittle nature of the IMC; (b) XRD spectrum of AlLi IMC. 18 Figure 2.1. Schematic of discharge apparatus used to examine the anode efficiency and discharge behaviour of Mg alloy. 36 Figure 2.2. (a) X-Ray diffraction patterns of different Mg alloy foils; cross-sectional microstructures of as-rolled AZ31 foil (b), as-rolled LAZ1231 foil (c) and as-rolled LAZ1291 foil (d). 37 Figure 2.3. OCP curves of Mg alloy foils in 2 mol Kg-1 MgCl2 electrolyte solution. 38 Figure 2.4. Anode efficiency of Mg/2 mol Kg-1 MgCl2/Cu cell at different discharge currents 1, 10, 20 and 30 mA. 39 Figure 2.5. Discharge behaviours of Mg foil/2 mol Kg-1 MgCl2/Cu cell at discharge current of (a) 10 mA, (b) 20 mA and (c) 30 mA. 40 Figure 2.6. Capacity of Mg alloy foil/Cu cell at 10 mA, 20 mA and 30 mA current drains in 2 mol Kg-1 MgCl2 electrolyte solution. 41 Figure 2.7. (a) GAXRD patterns from the surface of AZ31, LAZ1231 and LAZ1291 foils that had been immersed in 2 mol Kg-1 MgCl2 solution for five hours; BSE micrographs (b), (c) and (d) showing cross-sectional images of the AZ31, LAZ1231 and LAZ1291 samples, respectively. 42 Figure 2.8. Cross-sectional BSE images of the samples after five hours of immersion in 2 mol Kg-1 MgCl2 electrolyte: (a) LAZ1231 and (b) LAZ1291 samples. 43 Figure 2.9. Corrosion rates of LAZ1291, LAZ1231 and AZ31 alloy foils in 2 mol Kg-1 MgCl2 electrolyte solution (immersion testing for five hours at 30 ± 1 ºC). 44 Figure 2.10. Corrosion rates of AZ31 alloy foil in the aqueous MgCl2 solutions with different Li+ concentrations at 30 ± 1 ºC. The concentration of Cl- in the solutions was fixed at 4 mol Kg-1. 45 Figure 2.11. Cross-sectional images of the samples that had been immersed in 2 mol Kg-1 MgCl2 electrolyte for five hours: (a) LAZ1231 and (b) LAZ1291 samples, showing their BSE images and the corresponding elemental distribution maps recorded with Mg K and Al K. 46 Figure 2.12. Electron spectroscopy for chemical analysis (ESCA) emission lines of Al 2p from the surfaces of (a) LAZ1231, and (b) LAZ1291 foils after immersion in 2 mol Kg-1 MgCl2 solution for five hours; BSE micrographs of LAZ1231 (c) and LAZ1291 (d). 47 Figure 2.13. Corrosion rates of LAZ1291 and LAZ1231 alloy foils in 2 mol Kg-1 MgCl2 solution at 30 ± 1 ºC for 10 hours. For comparison, the corrosion rate data of five hours immersion test in Fig. 2.9 were added in this plot. 48 Figure 3.1. (a) X-Ray diffraction patterns of LDH_1h, LDH_3h and LDH_6h; (b)-(d) SEM microstructures of the LDH_1h, LDH_3h and LDH_6h samples. 66 Figure 3.2. FT-IR spectra of LDH_1h, LDH_3h and LDH_6h. 67 Figure 3.3. (a) and (b) TEM bright field and dark field images of LDH_1h sample; (c) selected area diffraction pattern from a large area in Fig. 3.3(b); (d)-(f) TEM nanobeam diffraction patterns of different zone axes from a nanoscale crystal in Fig. 3.3(b). 68 Figure 3.4. Fluoride absorption by LDH_1h in a fluoride aqueous solution. 69 Figure 3.5. (a) X-ray diffraction pattern; (b) FT-IR spectrum of LDH_1h sample after absorption of fluoride for 10 min (LDH_1h_F10). For comparison, the XRD pattern (from Fig. 3.1(a)) and the FT-IR spectrum (from Fig. 3.2) of LDH_1h were added in plot (a) and (b), respectively. 70 Figure 4.1. Al3+ and Li+ concentrations of Solu_0.1, Solu_0.2 and Solu_0.4. 88 Figure 4.2. Variations of weight gain with time during the introduction of CO2 with flow rate of 70 ml/min into (a) Solu_0.1, Solu_0.2 and Solu_0.4 and (b) DI water. 89 Figure 4.3. Variations in pH with time of Solu_0.1, Solu_0.2 and Solu_0.4 during CO2, with flow rate of 70 ml/min, introduction process. 90 Figure 4.4. (a) XRD patterns of 60_0.1_70 ml/min, 180_0.1_70 ml/min and 600_0.1_70 ml/min; FE-SEM images of (b) 60_0.1_70 ml/min, (c) 180_0.1_70 ml/min and (d) 600_0.1_70 ml/min. 91 Figure 4.5. FT-IR spectra of 60_0.1_70 ml/min, 180_0.1_70 ml/min and 600_0.1_70 ml/min. 92 Figure 4.6. (a) XRD patterns of 60_0.2_70 ml/min, 180_0.2_70 ml/min and 600_0.2_70 ml/min; FE-SEM images of (b) 60_0.2_70 ml/min, (c) 180_0.2_70 ml/min and (d) 600_0.2_70 ml/min. 93 Figure 4.7. FT-IR spectra of 60_0.2_70 ml/min, 180_0.2_70 ml/min and 600_0.2_70 ml/min. 94 Figure 4.8. (a) XRD diffractograms of 60_0.4_70 ml/min, 180_0.4_70 ml/min and 600_0.4_70 ml/min; FE-SEM images of (b) 60_0.4_70 ml/min, (c) 180_0.4_70 ml/min and (d) 600_0.4_70 ml/min. 95 Figure 4.9. FT-IR spectra of 60_0.4_70 ml/min, 180_0.4_70 ml/min and 600_0.4_70 ml/min. 96 Figure 4.10. (a) Variations in pH with time of Solu_0.2 during CO2 introduction with flow rates of 10 ml/min (dash line curve) and 70 ml/min. The variation in pH with time of Solu_0.2 during CO2 introduction with flow rate of 70 ml/min was previously shown in Fig. 4.3; (b) X-ray diffraction pattern of 180_0.2_10 ml/min. For comparison, the XRD pattern (from Fig. 4.6 (a)) of 180_0.2_70 ml/min was added in plot 4.10(b); (c) SEM microstructure of the 180_0.2_10 ml/min. 97 Figure 4.11. (a) Variations in pH with time of Solu_0.4 during CO2 introduction with flow rates of 120 ml/min (dash line curve) and 70 ml/min. The variation in pH with time of Solu_0.4 during CO2 introduction with flow rate of 70 ml/min was previously shown in Fig. 4.3; (b) X-ray diffraction pattern of 60_0.4_120 ml/min. For comparison, the XRD pattern (from Fig. 4.8 (a)) of 60_0.4_70 ml/min was added in plot 4.11(b); (c) SEM microstructure of the 60_0.4_120 ml/min. 98 Figure 4.12. FT-IR spectra of 180_0.2_10 ml/min and 60_0.4_120 ml/min. 99zh_TW
dc.language.isoen_USzh_TW
dc.publisher材料科學與工程學系所zh_TW
dc.subjectMagnesiumen_US
dc.subjectzh_TW
dc.subjectLithiumen_US
dc.subjectAluminiumen_US
dc.subjectAlloyen_US
dc.subjectIntermetallicsen_US
dc.subjectMolten salten_US
dc.subjectElectrolysisen_US
dc.subjectDepositionen_US
dc.subjectDiffusionen_US
dc.subjecthcp→bccen_US
dc.subjectDischarging testen_US
dc.subjectWeight lossen_US
dc.subjectCorrosionen_US
dc.subjectLayered double hydroxideen_US
dc.subjectCO2 absorptionen_US
dc.subjectAmorphousen_US
dc.subjectzh_TW
dc.subjectzh_TW
dc.subject合金zh_TW
dc.subject介金屬化合物zh_TW
dc.subject熔融鹽zh_TW
dc.subject電解zh_TW
dc.subject沉積zh_TW
dc.subject擴散zh_TW
dc.subject六方最密堆積→體心立方堆積zh_TW
dc.subject放電測試zh_TW
dc.subject重量損失zh_TW
dc.subject腐蝕zh_TW
dc.subject層狀雙氫氧化物zh_TW
dc.subject二氧化碳吸收zh_TW
dc.subject非晶zh_TW
dc.title以熔融鹽電解法製備含鋰之輕金屬合金及應用:(1)以鎂‒鋰‒鋁‒鋅合金作為鎂電池陽極材料之研究;(2)鋁鋰介金屬化合物用於合成鋰‒鋁層狀雙氫氧化物之研究zh_TW
dc.titlePreparation and Applications of Li-containing Light Metal Alloys by Molten Salt Electrolysis:(1)Mg‒Li‒Al‒Zn Alloys as Anode Material for Magnesium Battery;(2)Application of AlLi Intermetallic Compound to Synthesize Li‒Al Layered Double Hydroxideen_US
dc.typeThesis and Dissertationzh_TW
Appears in Collections:材料科學與工程學系
文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.