Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10805
標題: 以感應耦合式電漿輔助熱化學氣相沉積法製備碳密封鍍層光纖:不同電漿射頻功率對碳鍍層性質之影響
Hermetically carbon-coated optical fibers prepared by thermal chemical vapor deposition enhanced with inductively coupled plasma of different radio-frequency powers
作者: 賴良訓
Lai, Liang-Hsun
關鍵字: pyrolytic carbon
熱裂解碳
chemical vapor deposition
optical fiber
inductively coupled plasma
化學氣相沉積
光纖
感應耦合電漿
出版社: 材料科學與工程學系所
引用: [1] J. Crisp, “Introduction to Fiber Optics,” 2nd Ed., Newnes, Oxford, U.K. (2001). [2] J.P. Powers, “An Introduction to Fiber Optic Systems,” Aksen Associates, Boston (1993). [3] A. Mendez and T. Morse, “Specialty Optical Fibers Handbook,” Academic Press, San Diego (2007). [4] D.R. Biswas, Optical Engineering, 31 (1992) 1400. [5] D.L. Griscom, K.M. Golant, A.L. Tomashuk, D.V. Pavlov, and Y.A. Tarabrin, Applied Physics Letters, 69 (1996) 322. [6] V. Hagopian, Nuclear Physics B, 78 (1999) 635. [7] H.S. Seo, U.C. Paek, K. Oh, and C.R. Kurkjian, Journal of Lightwave Technology, 16 (1998) 2355. [8] M. Sedlar and L. Pust, Ceramics International, 21 (1995) 21. [9] S.T. Shiue, C.H. Yang, R.S. Chu, and T.J. Yang, Thin Solid Films, 485 (2005) 169. [10] D.K. Mynbaev and L.L. Scheiner, “Fiber-optic Communications Technology,” Prentice Hall, New Jersey (2001). [11] N. Yoshizawa, H. Tada, and Y. Katsuyama, Journal of Lightwave Technology, 9 (1991) 417. [12] Y. Katsuyama, N. Yoshizawa, and T. Yashiro, Journal of Lightwave Technology, 9 (1991) 1041. [13] S.T. Shiue, H.H. Hsiao, T.Y. Shen, H.C. Lin, and K.M. Lin, Thin Solid Films, 483 (2005) 140. [14] S.S. Chen, S.T. Shiue, Y.H. Wu, and K.J. Cheng, Surface and Coatings Technology, 202 (2007) 798. [15] K.J. Cheng, “Effects of the carbon coating thickness on the properties of hermetically carbon-coated optical fibers prepared by methane pyrolysis of thermal chemical vapor deposition,” Master thesis, Department of Materials Science and Engineering, National Chung Hsing University, Taichung City, Taiwan (R.O.C.) (2007). [16] S.S. Chen, S.T. Shiue, T.J. Yang, K.J. Cheng, P.Y. Chen, and H.Y. Lin, Journal of the Chinese Institute of Engineers, 32 (2009) 711. [17] P.Y. Chen, S.T. Shiue, and H.Y. Lin, Physica Status Solidi (a), 206 (2009) 1537. [18] P.Y. Chen, S.T. Shiue, and H.Y. Lin, Thin Solid Films, 518 (2010) 2883. [19] P.Y. Chen, “Effects of nitrogen/methane ratios and substrate sizes on the properties of carbon coatings on optical fibers prepared by thermal chemical vapor deposition,” Master thesis, Department of Materials Science and Engineering, National Chung Hsing University, Taichung City, Taiwan (R.O.C.) (2008). [20] R.H. Lee, L.H. Lai, and S.T. Shiue, Thin Solid Films, Article In Press, Published online: May 7 2010, doi: 10.1016/j.tsf.2010.04.085. [21] M. Ohring, “Materials Science of Thin Films,” 2nd Ed., Academic Press, San Diego (2002). [22] D.S. Rickerby and A. Matthews, “Advanced Surface Coatings: a Handbook of Surface Engineering,” Blackie and Son Ltd., London, U.K. (1991). [23] J. Robertson, Materials Science and Engineering R, 37 (2002) 129. [24] E. Sirtl, L.P. Hunt, and D.H. Sawyer, Journal of The Electrochemical Society, 121 (1974) 919. [25] F.C. Frank and J.H. van der Merwe, Proceedings of the Royal Society A, 198 (1949) 216. [26] M.A. Lieberman, A.J. Lichtenberg, “Principles of Plasma Discharges and Materials Processing,” John Wiley and Sons, New York (1994). [27] J. Hopwood, Plasma Sources Science and Technology, 1 (1992) 109. [28] B.D. Cullity and S.R. Stock, “Elements of X-ray Diffraction,” 3rd Ed., Prentice Hall, New Jersey (2001). [29] 汪建民, “材料分析,” 中國材料科學學會 (2008). [30] R.L. Mccreery, “Raman Spectroscopy for Chemical Analysis,” John Wiley and Sons, New York (2000). [31] F. Tuinstra and J.L. Koenig, The Journal of Chemical Physics, 53 (1970) 1126. [32] P.C. Eklund, J.M. Holden, and R.A. Jishi, Carbon, 33 (1995) 959. [33] J.F. Moulder, W.F. Stickle, P.E. Sobol, J. Chastain, and K.D. Bomben, “Handbook of X-ray Photoelectron Spectroscopy,” Perkin-Elmer Corporation, Minnesota (1992). [34] T. Young, Philosophical Transactions of the Royal Society of London, 95 (1805) 65. [35] Instruction manual of the Four-point Probe (Model:QT-50). http://www.mems.louisville.edu/lutz/resources/sops/sop45.html [36] J.C. Legrand, A.M. Diamy, R. Hrach, V. Hrachova, and J. DiCarlo, Vacuum, 48 (1997) 67. [37] W. Benzinger, A. Becker, and K.J. Hüttinger, Carbon, 34 (1996) 957. [38] J. Hong and G. Turban, Diamond and Related Materials, 8 (1999) 572. [39] P.W. May, P.R. Burridge, C.A. Rego, R.S. Tsang, M.N.R. Ashfold, K.N. Rosser, R.E. Tanner, D. Cherns, and R. Vincent, Diamond and Related Materials, 5 (1996) 354. [40] X.G. Qi, Z.S. Chen and H. Xu, Surface and Coatings Technology, 200 (2006) 5268 [41] H. Yokomichi, A. Masuda, and N. Kishimoto, Thin Solid Films, 395 (2001) 249. [42] Y.S. Ding, W.N. Li, S. Iaconetti, X.F. Shen, J. DiCarlo, F.S. Galasso, and S.L. Suib, Surface and Coatings Technology, 200 (2006) 3041. [43] L.G. Cancado, K. Takai, T. Enoki, M. Endo, Y.A. Kim, H. Mizusaki, A. Jorio, L.N. Coelho, R. Magalhães-paniago, and M.A. Pimenta, Applied Physics Letters, 88 (2006) 163106. [44] A.C. Ferrari and J. Robertson, Physical Review B, 61 (2000) 14095. [45] E. Tomasella, C. Meunier, and S. Mikhailov, Surface and Coatings Technology, 141 (2001) 286. [46] M. Lejeune, O.D. Drouhin, J. Henocque, R. Bouzerar, A. Zeinert, and M. Benlahsen, Thin Solid Films, 389 (2001) 233. [47] G.L. Dû, N. Celini, F. Bergaya, and F. Poncin-epaillard, Surface and Coatings Technology, 201 (2007) 5815. [48] N. Inagaki, K. Narushima, H. Hashimoto, and K. Tamura, Carbon, 45 (2007) 797. [49] P. Mérel, M. Tabbal, M. Chaker, S. Moisa, and J. Margot, Applied Surface Science, 136 (1998) 105. [50] R.N. Wenzel, The Journal of Physical Chemistry, 53 (1949) 1466. [51] S. Adachi, T. Arai, and K. Kobayashi, Journal of Applied Physics, 80 (1996) 5422. [52] L. Ostrovskaya, V. Perevertailo, V. Ralchenko, A. Dementjev, and O. Loginova, Diamond and Related Materials, 11 (2002) 845. [53] T.H. Fang and W.J. Chang, Applied Surface Science, 220 (2003) 175. [54] J.H. Son, M.Y. Park, and S.W. Rhee, Thin Solid Films, 335 (1998) 229.
摘要: 本論文主要是以感應耦合式電漿輔助熱化學氣相沉積法製備光纖碳密封鍍層,並探討不同射頻功率對碳鍍層性質之影響。使用16 sccm的甲烷以及4 sccm的氮氣做為前驅氣體,射頻功率控制在0 ~ 400 W之間。沉積溫度為975 ℃,沉積壓力為4 kPa,而沉積時間為2小時。本實驗也利用場發式掃描電子顯微鏡、X光繞射儀、拉曼光譜儀、X光光電子能譜儀、原子力顯微鏡、接觸角儀器、四點探針儀和光學顯微鏡來觀察並量測碳鍍層的碳膜厚度、微觀結構、表面粗糙度、表面特性、電學性質以及抗溫變能力。研究結果發現,當射頻功率由0 W增加至200 W時,碳鍍層的沉積速率會呈現上升的趨勢;而當射頻功率超過200 W時,沉積速率會下降。碳鍍層垂直面向的微晶大小 (Lc) 隨沉積厚度增加而增加,結構有序程度及平行面向的微晶大小 (La) 則是隨著沉積厚度增加而下降。隨著射頻功率的增加,碳鍍層中的sp2含量會增加使結構趨向石墨化。由研究結果也可發現表面粗糙度和水接觸角成反比關係。電阻率隨射頻功率的增加由56.96 Ω‧μm下降至14.01 Ω‧μm。由溫變試驗前後碳鍍層表面形貌量測之結果得知,當碳鍍層厚度大於76 nm時,其可以通過溫變試驗並可做為光纖的密封鍍層。
This study investigates the effects of different radio-frequency (rf) powers on the properties of carbon coatings on optical fibers that are prepared by thermal chemical vapor deposition enhanced with inductively coupled plasma. Methane (16 sccm) and nitrogen (4 sccm) were used as the precursor gases, and rf powers were set between 0 and 400 W. The deposition temperature, working pressure, and deposition time were set to 975 ℃, 4 kPa, and 2 hours, respectively. The coating thickness, microstructure, surface roughness, surface property, electrical property, and low-temperature morphology of carbon coatings were investigated by field emission scanning electron microscopy, X-ray diffraction spectrometer, Raman scattering spectrometer, X-ray photoelectron spectrometer, atomic force microscopy, contact angle meter, four-points probe, and optical microscopy. The results indicate that the deposition rate increases as the rf power increases from 0 to 200 W, but the deposition rate decreases as the rf power exceeds 200 W. The mean crystallite size (Lc) increases with increasing the coating thickness, but the degree of ordering and in-plane crystallite size (La) decrease. Moreover, when the rf power increases, the carbon coatings have more sp2 carbon atoms and become graphite-like. The results also show that the surface roughness is inversely related to the water contact angle. As the rf power increases from 0 to 400 W, the electrical resistivity of carbon coatings decreases from 56.96 to 14.01 Ω‧μm. Finally, based on the low-temperature morphologies of carbon coatings, as the coating thickness exceeds 76 nm, the carbon coating has the ability to withstand thermal stress, and is good for use as a hermetical optical fiber coating.
URI: http://hdl.handle.net/11455/10805
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.