Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10821
標題: AZ91切削屑生成Mg,Al水滑石之成長方法、陰離子吸收性及其應用於Mg,Al水滑石粉末製作之研究
On the growth method, anion absorption of the Mg,Al-hydrotalcite conversion coating on AZ91 machined scraps
作者: 吳萬益
Wu, Wan-Yi
關鍵字: AZ91
AZ91
machined scraps
Mg,Al hydrotalcite
XRD
ion chromatography
IR spectroscopy
切削屑
Mg,Al水滑石
X光繞射
離子層析儀
IR光譜
出版社: 材料科學與工程學系所
引用: [1] 許樹恩,材料手冊-Ⅱ非鐵金屬材料,材料科學學會,1983,p.333、355~356。 [2] H. E. Friedrich, B. L. Mordike, Magnesium Technology-Metallurgy, Design Data, Applications, Springer, 2006, p.634~635. [3] 邱垂泓, AZ91D 鎂屑之水解處理, 工業材料雜誌, 176期, 90年8月, pp. 140~144。 [4] F. Bergaya, B. K. G. Theng, G. Lagaly, Handbook of clay science, Elsevier, 2006, pp.1021. [5] K.-H. Goh, T.-T. Lim, Z. Dong, Water Research, 42, 2008, pp.1343-1368. [6] A. I. Khan, D. O’Hare, J. Mater. Chem., 2002, 12, pp.3191–3198. [7] H. Acharya, S.K. Srivastava, Anil K. Bhowmick, Composites Science and Technology 67, 2007, pp.2807–2816. [8] S. Miyata, Clays Clay Miner., 1983, 31, pp.305. [9] V. Rives, M. A. Ulibarri, Coord. Chem. Rev., 1999, 181, pp.61–120. [10] X. Duan, D.G. Evans, Layered Double Hydroxides, Springer, 2006, pp.204. [11] T. Kameda, Y. Miyano, T. Yoshioka, M. Uchida, and A. Okuwaki, Chemistry Letters 2000, The Chemical Society of Japan, 2000, pp.1136~1137. [12] F. Bergaya, B.K.G. Theng, G. Lagaly, Handbook of Clay Science, Ch.13.1, Elsevier, 2006, pp.1024-1034. [13] X. Duan, D.G. Evans, Layered Double Hydroxides, Springer, 2006, pp.92-108. [14] S. M. Auerbach, K. A. Carrado, P. K. Dutta, Handbook of Layered Materials, Marcel Dekker, 2004, pp.376-382. [15] S. Miyata, Clays Clay Miner., 1980, 28, pp.50-56. [16] J.K. Lin, C.L. Hsia, J.Y. Uan, Scripta Mater., 2007, Vol.56, pp.927. [17] J. W. Boclair, P. S. Braterman, Chem. Mater., 1999, 11, pp.298-302. [18] F. Millange, R. Walton, D. O''Hare, J. Mater. Chem., 2000, 10, pp.1713-1720. [19] M.-C. Lin, F.-T. Chang, J.-Y. Uan, J. Mater. Chem., 2010, 20, pp.6524-6530 [20] J. K. Lin, J. Y. Uan, Corr. Sci., 2009, 51, pp.1181-1188. [21] B. H. Stuart, Analytical Techniques in Materials Conservation, John Wiley & Sons, 2007, p.342~343. [22] M. R. Kang, H. M. Lim, S. C. Lee, S. H. Lee and K. J. Kim, Layered double hydroxide and its anion exchange capacity, AZojomo, 1, 2005, pp.1-13. [23] V. Rives, Inorg. Chem., 1999, 38, pp.406-407. [24]L. Lv, J. He, M. Wei, D. G. Evans, Z. Zhou, Water Research, 41, 2007, pp.1534-1542 [25] A. R. Yacob, M. K. A. A. Mustajab, N. S. Samadi, World Academy of Science, Engineering and Technology, 56, 2009, pp.408~412. [26] Z. P. Xu, G. Q. (Max) Lu, Chem. Mater. 2005, 17, pp.1055-1062. [27] E. Álvarez-Ayuso, H. W. Nugteren, Water Research, 39, 2005, pp.2535-2542. [28] P. Benito, F. M. Labajos, J. Rocha, V. Rives, Microporous and Mesoporous Materials, 94, 2006, pp.148-158. [29] D. A. Palmer, R. Van Eldik, Chem. Rev. 1983, 83, 651-731. [30] S. M. Auerbach, K. A. Carrado, P. K. Dutta, Handbook of Layered Materials, Marcel Dekker, 2004, pp.402-403. [31] L. El Gaini, M. Lakraimi, E. Sebbar, A. Meghea, M. Bakasse, Journal of Hazardous Materials, 161, 2009, pp.627-632. [32] H.S. Panda, R. Srivastava, D. Bahadur, Materials Research Bulletin, 43, 2008, pp.1448-1455.
摘要: AZ91切削屑的外觀為片狀的細屑,因此有比表面積大的優點。將AZ91切削屑浸入50℃碳酸水溶液中,持續攪拌3h,由GAXRD分析在表面已成長Mg,Al水滑石薄膜,插層離子為碳酸根。將Mg,Al水滑石切削屑鍛燒450℃,可分別吸收水溶液中氯與氟離子。在Mg,Al水滑石切削屑上原位(in-situ)成長Al,Li水滑石,此Al,Li水滑石有直接吸收氟離子的效果。以酸性3.5wt.% NaCl水溶液處裡之Mg,Al水滑石切削屑,使其插層離子置換為氯離子,稱為Mg,Al(Cl-)水滑石。三種處理方式之水滑石切削屑在吸收氟離子實驗中,以Mg,Al(Cl-)水滑石切削屑之吸收氟離子能力最佳,是Al,Li/Mg,Al水滑石切削屑的3.7倍,且比鍛燒Mg,Al水滑石切削屑稍佳。將Mg,Al水滑石切削屑於水溶液中連續攪拌,因表面水滑石薄膜崩解而可取得粉末,所得粉末經XRD分析均有Mg,Al水滑石結構。以場發射掃描式電子顯微鏡觀察各階段粉末均有水滑石,但是攪拌愈久水滑石愈細小。由FTIR分析結果顯示層間碳酸根離子為低對稱的C2v位置,並顯示在攪拌中段之前的粉末結構以Mg3Al水滑石為主,此階段由原生成薄膜崩解得之;而後段則以Mg2Al水滑石為主,攪拌過程中持續生成的新薄膜所供給。
AZ91 machined scraps of the appearance of fine flake crumbs, so have the advantages of large specific surface area. AZ91 scraps would be immersed in 50˚C carbonate aqueous solution, continuously stirring 3h, the GAXRD analysis showed the surface of scraps had grown Mg,Al hydrotalcite film with intercalated carbonate ions. The Mg,Al hydrotalcite scraps were calcined at 450˚C, then absorbed chlorine and fluorine ions in aqueous solution respectively. The Al,Li hydrotalcite in-situ grown on Mg,Al hydrotalcite scraps, that could directly absorbed fluorine ions. The Mg,Al hydrotalcite scraps were immersed in the acid 3.5 wt. % NaCl aqueous solution, its intercalated ion become chlorine ion, then named Mg,Al(Cl-) hydrotalcite. In the experiment of absorption of fluorine ion, three kinds of treatment of hydrotalcite scraps which Mg,Al(Cl-) hydrotalcite scraps absorption capacity of the best, and 3.7 times of Al,Li/Mg,Al hydrotalcite scraps, and slightly better than the calcined Mg,Al hydrotalcite scraps. The Mg,Al hydrotalcite scraps continuously stirred in aqueous solution, due to the hydrotalcite film disintegration could be obtained powders, all of the powders had the composition of Mg,Al hydrotalcite structure through XRD analysis measured. By field emission scanning electron microscope, the powder showed the shape of hydrotalcite, but the powder by longer stirring, that hydrotalcite flake becomes smaller. The FTIR analysis of all powder showed that interlayer carbonate ions located at low symmetry C2v location. The FTIR results revealed the main structure of the powder was Mg3Al hydrotalcite between initial and intermediate stirring stage, in this stage the original hydrotalcite film disintegrated then made. At the post stage main structure of the powder was Mg2Al hydrotalcite that created by continuously generated the new film via stirring process.
URI: http://hdl.handle.net/11455/10821
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.