Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10826
標題: 使用AlLi介金屬化合物製備離子水溶液合成Li/Al雙氫氧化合物(LDH)薄膜於玻璃基材/矽基板/碳布及該LDH薄膜性質分析之研究
Synthesizing Li-Al layered double hydroxide (LDH) film on glass substrate/Si wafer and carbon cloth in the ionic solution made of AlLi intermetallic in distilled water
作者: 謝智倫
Hsieh, Zhi-Lun
關鍵字: Li-Al LDH
疏水性
hydrophobic
hydrophilic
親水性
出版社: 材料科學與工程學系所
引用: 1. F. Cavani, F. Trifiro and A. Vaccari, Catal. Today, 1991, 11, 173-301. 2. C.J. Serna, J. L. Rendon and J.E. iglesias, Clays and Clay Minerals, 1982, 30, 180-184. 3. P.K. Dutta and M. Puri, The Journal of Physical Chemistry, 1989, 93, 376-381. 4. A.V. Besserguenev, A.M. Fogg, R.J. Francis, S.J. Price, and D. O'Hare, V.P. Isupov and B.P. Tolochko, Chem. Mater., 1997, 9, 241-247. 5. S.L. Wang, R.J. Hseu, R.R. Chang, P.N. Chiang, J.H. Chen and Y.M. Tzou, Colloid Surf. A: Physicochem. Eng. Asp., 2006, 277, 8-14. 6. I. Sissoko, E. T. Iyagba, R. Sahai and P. Biloen, Journal of Solid State Chemistry, 1985, 60, 283-288. 7. M. C. Lin, F. T. Chang and J. Y. Uan, J. Mater. Chem., 2010, 20, 6524-6530. 8. S. Bhattacharjee, T. J. Dines and J. A. Anderson, J. Phys. Chem. C, 2008, 112, 14124-14130. 9. D. Francova, N. Tanchoux, C. Gerardin, P. Trens, F. Prinetto, G. Ghiotti, D. Tichit and B. Coq, Microporous Mesoporous Mater., 2007, 99, 118-125. 10. Y. Liu, K. Murata, T. Hanaoka, M. Inaba and K Sakanishi, J. Catal, 2007, 248, 277-287. 11. B. Sels, D. De Vos, M. Buntinx, F. Pierard, A. Kirsch-De Mesmaeker and P. Jacobs, Nature, 1999, 400, 855-857. 12. K. Tomohito, S. Shingo and U. Yoshiaki, Purif. Technol., 2005, 47, 20-26. 13. P. C. pavan, G. A. Gomes and J. B. Valim, Microporous Mesoporous Mater., 1998, 21, 659-665. 14. Y. Wang and H. Gao, J. Colloid Interface Sci., 2006, 301, 19-26. 15. D. L. Bish, Bull. Mineral., 1980, 103, 170. 16. M. Darder, M. Lopez-Blanco, P. Aranda, F. Leroux and E. Ruiz-Hitzky, Chem. Mater., 2005, 17, 1969-1977. 17. C. Forano, S. Vial and C. Mousty, Curr. Nanosci., 2006, 2, 284-294. 18. J.H. Choy, S.J. Choi, J.M. Oh and T. Park, Appl. Clay Sci., 2007, 36, 122-132. 19. A. Corma, S. B. A. Hamid, S. Iborra and A. Velty, J. Catal., 2005, 234, 340-347. 20. J. L. Shumaker, C. Crofcheck, S.A. Tackett, E. Santillan-Jimenez and M. Crocker, Catal. Lett., 2007, 115, 56-61. 21. J. L. Shumaker, C. Crofcheck, S.A. Tackett, E. Santillan-Jimenez, T. Morgan, Y. Ji, M. Crocker and T. J. Toops, Appl. Catal. B, 2008, 82, 120-130. 22. Y. Wang, F. Zhang, S. Xu, X. Wang, D. G. Evans, and X. Duan, Ind. Eng. Chem. Res., 2008, 47, 5746-5750. 23. G. Centi and S. Perathoner, Catalysis Today, 2003, 79-80, 3-13. 24. J. Aumo, S. Oksanen, J. P. Mikkola, T. Salmi and D. Y. Murzin, Ind. Eng. Chem. Res., 2005, 44, 5285-5290. 25. A. Sirijaruphan, J. G. Goodwin Jr., R. W. Rice, D. Wei, K. R. Butcher, G. W. Roberts and J. J. Spivey, Appl. Catal. A: Gen., 2005, 281, 1-9. 26. Y. Matatov-Meytal, V. Barelkob, I. Yuranov and M. Sheintuch, Appl. Catal. B: Environmental, 2000, 27, 127-135. 27. B. Louis, P. Reuse, L. Kiwi-Minsker and A. Renken, Appl. Catal. A: Gen., 2001, 210, 103-109. 28. Y. Matatov-Meytal, V. Barelko, I. Yuranov, L. Kiwi-Minsker, A. Renken and M. Sheintuch, Appl. Catal. B: Environmental, 2001, 31, 233-240. 29. T. Boger, M. M. P. Zieverink, M. T. Kreutzer, F. Kapteijn, and J. A. Moulijn and W. P. Addiego, Ind. Eng. Chem. Res., 2004, 43, 2337-2344. 30. M. Uzunov-Bujnova, R. Todorovska, M. Milanova, R. Kralchevska and D. Todorovsky, Applied Surface Science, 2009, 256, 830-837. 31. J. Sun, X. Wang, J. Sun, R. Sun, S. Sun and L. Qiao, Journal of Molecular Catalysis A: Chemical, 2006, 260, 241-246. 32. Y. Liang, H.B. Dai, L. P. Ma, P. Wang and H. M. Cheng, Journal of Hydrogen Energy, 2010, 35, 3023-3028. 33. J. L. Williams, Catalysis Today, 2001, 69, 3-9. 34. V. Meille, Applied Catalysis A: General, 2006, 315, 1-17. 35. Xiaoxiao Guo, Fazhi Zhang, David G. Evans and Xue Duan, Chem. Commun., 2010, 46, 5197-5210. 36. J.Y. Uan, J.K. Lin and Y.S. Tung, J. Mater. Chem., 2010, 20, 761-766. 37. Yi Du, Gang Hu and Dermot O'Hare, J. Mater. Chem., 2009, 19, 1160-1165. 38. Y. Wang, F. Zhang, S. Xu, X. Wang, D. G. Evans and X. Duan, Ind. Eng. Chem. Res., 2008, 47, 5746-5750. 39. Liang Li, Renzhi Ma, Yasuo Ebina, Nobuo Iyi, and Takayoshi Sasaki, Chem. Mater., 2005, 17, 4386-4391. 40. J.H. Lee, S.W. Rhee and D.Y. Jung, J. Am. Chem. Soc., 2007, 129, 3522-3523. 41. K. Okamoto, T. Sasaki, T. Fujita and N. Iyi, J. Mater. Chem., 2006, 16, 1608-1616. 42. E. Gardner, K. M. Huntoon and T. J. Pinnavaia, Adv. Mater., 2001, 13, 1263-1266. 43. J. Liu, X. Huang, Y. Li, K.M. Sulieman, X. He and F. Sun, J. Phys. Chem. B, 2006, 110, 21865-21872. 44. Hongyun Chen, Fazhi Zhang, Tao Chen, Sailong Xu, David G. Evans, Xue Duan, Chemical EngineeringScience, 2009, 64, 2617-2622. 45. J. Liu, Y. Li, X. Huang, G. Li and Z. Li, Adv. Funct. Mater., 2008, 18, 1448-1458. 46. Xiaoxiao Guo, Fazhi Zhang, Sailong Xu, Zhaohui Cui, David G. Evans, and Xue Duan, Ind. Eng. Chem. Res., 2009, 48, 10864-10869. 47. Zhi Lu, Fazhi Zhang, Xiaodong Lei, Lan Yang, David G. Evans, Xue Duan, Chemical Engineering Science, 2007, 62, 6069-6075. 48. Xiaoxiao Guo, Fazhi Zhang, Sailong Xu, David G. Evans and Xue Duan, Chem. Commun., 2009, 6836-6838. 49. (a) J. Smolinski, J. Appl. Chem., 1956, 6, 180-186; (b) Y. Watanabe, M. Toyoshima and K. Itoh, Journal de Physique, 1987, 48, C3-85-C3-91; (c) M. C. Lin, C. Y. Tsai and J. Y. Uan, Scripta Mater., 2007, 56, 597-600. 50. W. J. Hamer, M. S. Malmberg and B. Rubin, J. Electrochem. Soc. 1956, 103, 8-16. 51. J. Sangster and A. D. Pelton, in Binary Alloy Phase Diagrams, ed. T. B. Massalski, H. Okamoto, P. R. Subramanian and L. Kacprzak, ASM International, Materials Park, Ohio, USA, 2nd edn., 1996, vol. 1, p.165. 52. J. K. Lin, C. L. Hsia and J. Y. Uan, Scripta Materialia, 2007, 56, 927-930. 53. J. K. Lin and J. Y. Uan, Corrosion Science, 2009, 51, 1181-1188. 54. C. J. Serna, J. L. White and S. L. Hem, Clay Clay Min., 1977, 25, 384-391. 55. I. C. Chisem and W. Jones, J. Mater. Chem., 1994, 4, 1737-1744. 56. D. Li, Z. Tuo, D. G. Evans and X. Duan, J. Solid State Chem., 2006, 179, 3114-3120. 57. Q. He, S. Yin and T. Sato, Journal of Physics and Chemistry of Solids, 2004, 65, 395-402. 58. L. Perioli, V. Ambrogi, B. Bertini, M. Ricci, M. Nocchetti, L. Latterini and C. Rossi, European Journal of Pharmaceutics and Biopharmaceutics, 2006, 62, 185-193. 59. U. Costantion, V. Ambrogi, M. Nocchetti and L. Perioli, Microporous and Mesoporous Materials, 2008, 107, 149-160.
摘要: 本研究發展一個新穎的方法達到在含有鋁離子與鋰離子的鹼性水溶液中直接生長高方向性鋰鋁層狀雙氫氧化物薄膜形成於玻璃基材、矽基板、碳布基材上,形成層狀雙氫氧氧化物薄膜是在大氣環境下將上述這些基材分別懸吊並浸置於鹼性水溶液中,鋰鋁層狀雙氫氧化物薄膜的組成來自於高密度且自我組裝在基材上的鋰鋁層狀雙氫氧化物薄片,且各薄片接近垂直地站立在基材表面。層狀雙氫氧化物的薄膜厚度隨著浸置處理時間的增加而增厚,也隨著鹼性水溶液的處理溫度升高而增加,因此,薄膜會達到一個穩定的厚度區間。形成鋰鋁層狀雙氫氧化物薄膜達到一個穩定厚度所需的浸置時間與鹼性水溶液的溫度有關。不同處理溫度的鋰鋁層狀雙氫氧化物薄膜在玻璃基材上的紫外光可見光穿透光譜結果在以下說明討論,在玻璃基材上處理溫度為5 oC的鋰鋁層狀雙氫氧化物薄膜(約1.45 μm的厚度)顯示好的紫外線遮蔽能力(穿透率9.7 %),在可見光波長範圍的最大穿透率56 %。一個相似的方法也可以發展將鋰鋁層狀雙氫氧化物薄膜形成覆蓋在疏水性與親水性碳布的表面結構,經過處理的碳布纖維將有高密度的鋰鋁層狀雙氫氧化物薄片形成於碳纖維表面上,此處理結果將可以明顯的增大碳纖維表面積;儘管碳布纖維的表面經過形成鋰鋁層狀雙氫氧化物薄膜改質處理,經過處理的疏水性碳布與親水性碳布仍然保持它們原有的疏水特性與親水特性。本研究認為大氣環境中的二氧化碳溶於含有鋁離子與鋰離子的鹼性水溶液中轉變為碳酸根離子以提供形成鋰鋁層狀雙氫氧化物的陰離子,層狀雙氫氧化物各薄片在基材表面上透過成核成長的機制最後形成層狀雙氫氧化物薄膜。
This paper describes a novel method to achieve direct growth of highly-oriented Li-Al LDH film on substrates such as glass, Si wafer and carbon cloth in an alkaline Al3+- and Li+-containing aqueous solution. The substrate samples were each hanged, and then immersed in the solution for LDH film formation in ambient atmosphere. The Li-Al LDH film composed of extra high density of Li-Al LDH platelets, each almost perpendicularly standing on substrate surface. The LDH film thickness increased with increasing immersion time and/or with increasing solution temperature. Consequently, the thickness would reach a plateau region during the LDH formation. The time to reach the plateau region depends on the solution temperature. UV-visible transmittance spectra of the Li-Al LDH films on glasses were reported. The LDH film that was fabricated at 5 oC (~1.45 μm in thickness) exhibits good UV shielding ability (only 9.7% UV transparency) and a maxium of 56% transparency in the visible. A similar method can also be employed to develop a Li-Al LDH film covering on both hydrophobic and hydrophilic carbon cloth surface. The fibers of the treated carbon clothes had extra high density of LDH platelets on surface, which leads to the fibers have remarkably large surface area. In spite of the surface modification on the carbon fibers, the treated carbon clothes still retain their original surface properties (e.g., hydrophobicity or hydrophilicity). The study believed that CO2 in the atmosphere dissolved in the alkaline Al3+- and Li+-containing solution to provide CO32- ions for Li-Al LDH formation. Nucleation and growth of each LDH platelets on substrate surface finally resulted in a LDH film.
URI: http://hdl.handle.net/11455/10826
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.