Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10829
標題: 使用鋁鋰介金屬化合物製備鹼性離子溶液以合成中間層硝酸根、氯離子或碳酸根之鋰鋁層狀雙氫氧化物之研究
Applictation of AlLi Intermetallic Compound to Prepare Alkaline Ionic Liquid for Synthesizing Li-Al-A (A = NO3, Cl or CO3) Layered Double Hydroxide
作者: 張富存
Chang, Fu-Tshng
關鍵字: AlLi intermetallic compound
鋁鋰介金屬化合物
hydrotalcite
layered double hydroxide (LDH)
metal salt
層狀雙氫氧化物
金屬鹽類
出版社: 材料科學與工程學系所
引用: F. Cavani, F. Trifirò and A. Vaccari, Catalysis Today, 1991, 11, 173-301. D. Evans and R. Slade, in Layered Double Hydroxides, eds. X. Duan and D. Evans, Springer Berlin / Heidelberg, 2006, pp. 1-87. A. I. Khan and D. O''Hare, ChemInform, 2003, 34, no-no. A. V. Besserguenev, A. M. Fogg, R. J. Francis, S. J. Price, D. O''Hare, V. P. Isupov and B. P. Tolochko, Chemistry of Materials, 1997, 9, 241-247. P. K. Dutta and M. Puri, The Journal of Physical Chemistry, 1989, 93, 376-381. K. Okada, F. Matsushita and S. Hayashi, Clay Minerals, 1997, 32, 299-305. S. P. Newman and W. Jones, New Journal of Chemistry, 1998, 22, 105-115. C. J. Serna, J. L. Rendon and J. E. Iglesias, Clays and Clay Minerals, 1982, 30, 180-184. I. Sissoko, E. T. Iyagba, R. Sahai and P. Biloen, Journal of Solid State Chemistry, 1985, 60, 283-288. S. L. Wang, R. J. Hseu, R. R. Chang, P. N. Chiang, J. H. Chen and Y. M. Tzou, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 277, 8-14. S. Bhattacharjee, T. J. Dines and J. A. Anderson, The Journal of Physical Chemistry C, 2008, 112, 14124-14130. D. Francová, N. Tanchoux, C. Gérardin, P. Trens, F. Prinetto, G. Ghiotti, D. Tichit and B. Coq, Microporous and Mesoporous Materials, 2007, 99, 118-125. B. Sels, D. D. Vos, M. Buntinx, F. Pierard, A. Kirsch-De Mesmaeker and P. Jacobs, Nature, 1999, 400, 855-857. T. Kameda, S. Saito and Y. Umetsu, Separation and Purification Technology, 2005, 47, 20-26. P. C. Pavan, G. d. A. Gomes and J. B. Valim, Microporous and Mesoporous Materials, 1998, 21, 659-665. G. S. Thomas and P. V. Kamath, Materials Research Bulletin, 2002, 37, 705-713. Y. Wang and H. Gao, Journal of Colloid and Interface Science, 2006, 301, 19-26. S. Miyata, Clays and Clay Minerals, 1983, 31, 305-311. K.-H. Goh, T.-T. Lim and Z. Dong, Water Research, 2008, 42, 1343-1368. C. J. Serna, J. L. White and S. L. Hem, Clays and Clay Minerals, 1977, 25, 384-391. J. P. Thiel, C. K. Chiang and K. R. Poeppelmeier, Chemistry of Materials, 1993, 5, 297-304. H. Bosmans, Acta Crystallographica Section B, 1970, 26, 649-652. U. Hauschild, Zeitschrift für anorganische und allgemeine Chemie, 1963, 324, 15-30. A. M. Fogg and D. O''Hare, Chemistry of Materials, 1999, 11, 1771-1775. K. A. Tarasov, V. P. Isupov, L. E. Chupakhina and D. O''Hare, Journal of materials chemistry, 2004, 14, 1443-1447. C. Sullivan, World Development, 2002, 30, 1195-1210. C. J. Vörösmarty, P. Green, J. Salisbury and R. B. Lammers, Science, 2000, 289, 284-288. M. C. Lin, C. Y. Tsai and J. Y. Uan, Scripta Materialia, 2007, 56, 597-600. M. C. Lin, F. T. Chang and J. Y. Uan, Journal of Materials Chemistry, 2010, 20, 6524. J. Smolinski, Journal of Applied Chemistry, 1956, 6, 180-186. Y. Watanabe, M. Toyoshima and K. Itoh, J. Phys. Colloques, 1987, 48, C3-85-C83-91. W. J. Hamer, M. S. Malmberg and B. Rubin, Journal of The Electrochemical Society, 1956, 103, 8-16. L. Lv, J. He, M. Wei, D. G. Evans and X. Duan, Journal of Hazardous Materials, 2006, 133, 119-128. L. Lv, J. He, M. Wei, D. G. Evans and Z. Zhou, Water Research, 2007, 41, 1534-1542. K. R. Poeppelmeier and S. J. Hwu, Inorganic Chemistry, 1987, 26, 3297-3302. A. Schutz and P. Biloen, Journal of Solid State Chemistry, 1987, 68, 360-368. M. Singh, Journal of Materials Chemistry, 2004, 14, 871. G. R. Williams, A. J. Norquist and D. O''Hare, Chemistry of Materials, 2004, 16, 975-981. C. A. Drewien, Journal of Materials Research, 1996, 11, 1507. J. L. Shumaker, C. Crofcheck, S. A. Tackett, E. Santillan-Jimenez, T. Morgan, Y. Ji, M. Crocker and T. J. Toops, Applied Catalysis B: Environmental, 2008, 82, 120-130. I. C. Chisem, Journal of Materials Chemistry, 1994, 4, 1737. V. K. Srivastava, S. K. Sharma, R. S. Shukla and R. V. Jasra, Industrial & Engineering Chemistry Research, 2008, 47, 3795-3803. J. T. Kloprogge, L. Hickey and R. L. Frost, Journal of Materials Science Letters, 2002, 21, 603-605. P. Kuśtrowski, D. Sułkowska, L. Chmielarz, P. Olszewski, A. Rafalska-Łasocha and R. Dziembaj, Reaction Kinetics and Catalysis Letters, 2005, 85, 383-390. J. Theo Kloprogge and R. L. Frost, Applied Catalysis A: General, 1999, 184, 61-71. N. Viswanathan and S. Meenakshi, Applied Clay Science, 2010, 48, 607-611. D. P. Das, J. Das and K. Parida, Journal of Colloid and Interface Science, 2003, 261, 213-220.
摘要: 本實驗利用一種新的方法,可在室溫中以較短的時間合成中間層為不同陰離子(硝酸根、氯離子或碳酸根)的鋰鋁層狀雙氫氧化物(Li–Al LDH),此新的方法不需使用金屬鹽類來提供合成鋰鋁層狀雙氫氧化物所需之鋰離子、鋁離子與中間層陰離子。本實驗藉由鋁鋰介金屬化合物制備一富含鋰離子與鋁離子之鹼性溶液,再加入硝酸、鹽酸或通入二氧化碳至此鹼性離子溶液中來形成鋰鋁層狀雙氫氧化物。由於製程中未使用金屬鹽類,故本實驗所得之層狀雙氫氧化物不需用水清洗。從化學成分分析結果可得知本實驗所得之Li–Al–NO3 LDH, Li–Al–Cl LDH and Li–Al–CO3 LDH化學方程式分別為Li0.34Al0.66(OH)2(NO3)0.32•mH2O, Li0.37Al0.63(OH)2(CO3)0.26•mH2O and Li0.35Al0.65(OH)2Cl0.31•mH2O。本實驗也進行Li–Al LDH移除水中氟離子之研究,結果顯示Li–Al LDH可有效移除水中之氟離子,而不同中間層陰離子之Li–Al LDH移除水中氟離子能力依序為Li–Al–NO3 LDH > Li–Al–Cl LDH > Li–Al–CO3 LDH。
This work describes a novel method based on a metal salt-free system to synthesize a Li-Al-A layered double hydroxide (LDH) (A = NO3, Cl or CO3) in relatively short time at room temperature. This study use AlLi intermerallic compoumd to frabracate an alkaline content Li+ and Al+. Introduce HNO3, HCl or CO2 into the alkaline aqueous to supply the anion, NO3-, Cl- or CO32-, to frabracate Li-Al-A LDH samples. Washing in water was unnecessary because metal salts were not used to synthesize the LDH. The chemical analysis data indicated that the chemical formula of Li-Al-NO3 LDH, Li-Al-Cl LDH and Li-Al-CO3 LDH in this study was Li0.34Al0.66(OH)2(NO3)0.32•mH2O, Li0.37Al0.63(OH)2(CO3)0.26•mH2O and Li0.35Al0.65(OH)2Cl0.31•mH2O, respectively. This work also investigates the removal of the fluoride ions from an aqueous solution by using Li-Al-A LDH samples. The result indcated that Li-Al-A LDH samples can absorb fluoride ions from the fluoride-containing water effectively. The results indicate that the fluoride absorption abilities are in the order of Li-Al-NO3 LDH > Li-Al-Cl LDH > Li-Al-CO3 LDH.
URI: http://hdl.handle.net/11455/10829
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.