Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10838
標題: 聚乙醯胺基板應用於軟性顯示器之功能性鍍膜特性研究
Investigation of Functional Coatings on PI Substrates for Flexible Display Applications
作者: 劉嘉翔
Liu, Jia-Hsiang
關鍵字: flexible
可撓式
OLED
WVTR
Ca test
PECVD
水氧氣透過率
有機發光元件
鈣測法
電漿輔助化學氣相沉積
出版社: 材料科學與工程學系所
引用: [1] T. N. Chen, D. S. Wuu, C. C. Chiang, Y. P. Chen, and R. H. Horng, ”High-Performance Transparent Barrier Films of SiOx/SiNx Stacks on Flexible Polymer Substrates,” J. Electrochem. Soc., Vol. 153, pp. 244-248, 2006. [2] 謝銘洋,徐宏昇,陳哲宏,陳逸南,專利法解讀,元照出版有限公司,第12-15頁,2002。 [3] 莊達人,VLSI製造技術,高立書局,第12-18頁,2002。 [4] http://www.scsalpha.com/indexus.htm [5] Q. Yu, J. Deffeyes, and H. Yasuda, “Engineering the Surface and Interface of Parylene C Coatings by Low-Temperature Plasmas,” Prog. Org. Coat., vol. 41, pp. 247-253, 2001. [6] M. Liger, T. A. Harder, T. Y. Chong, and S. Konishi, “Parylene- Pyrolyzed Carbon for MEMS Applications,” IEEE, 17th IEEE International Conference on MEMS, pp. 161-164, 2004. [7] Y. H. Kim, D. G. Moon, and J. I. Han, “Organic TFT Array on A Paper Substrate,” IEEE Electron Device Lett., vol. 25, pp. 702-704, 2004. [8] A. Tooker, E. Meng, J. Erickson, Y. C. Tai, and J. Pine, “Development of Biocompatible Parylene Neurocages,” IEEE, 26th Annual International Conference of the Engineering in Medicine and Biology Society, vol. 1, pp. 2542-2545, 2004. [9] 楊智超,”薄膜過渡層與覆蓋厚度之探討” 國立中興大學應用數學研究所碩士論文,第21-22頁,2007. [10] 黃文雄,”製程參數對薄膜應力影響之研究,” 國立中央大學光電科學研究所碩士論文,第20-23頁,2006. [11] R. W. Hoffman, “In Physics of Nonmetallic Thin Films,” edited by C. H. S. Dupuy and A. Cachard, Plenum Press: New York, pp. 273, 1976. [12] K. L. Chopra, “Mechanical Effects in Thin Film Phenomena,” McGRAW -HILL : New York, pp. 266, 1969. [13] D. S. Campbell, L. I. Massel and R.Glang ed, “Mechanical Properties of Thin Film. In Handbook of Thin Film Technology,”New York: McGraw-Hill Book Company, pp. 12-21, 1970. [14] M. Ohring, “The Materials Science of Thin Film,” ACADEMIC. PRESS, INC. San Diego, pp. 419, 1992. [15] 物理學名詞,第二版.,國立編譯館編訂,台灣商務印書館發行,第230-231頁, 1990. [16] A. S. da Silva Sobrino, G. Czerremuszkin, M. Latreche, and M. R. Wertheimer, “Defect-Permeation Correlation for Ultrain Transparent Barrier Coatings on Polymers,” J. Vac. Sci. Technol. A, vol. 18, pp. 149-157, 2000. [17] W. R. Hale, K. K. Dohrer, M. R. Tant, and I. D. Sand, “A Diffusion Model for Water Vapor Transmission Through Microporous Polyethylene/CaCo3 Films” Colloids and Surfaces A: Physicochem. Eng. Aspects, vol. 187, pp. 483-491, 2001. [18] J. Comyn, and J. Comyn(Ed.), “Polymer Permeability”, Elsevier Applied Science, London and New York, 1986. [19] R. S. Kumar, M. Auch, E. Ou, G. Ewald, and C. S. Jin, “Low Moisture Permeation Measurement Through Polymer Substrates for Organic Light Emitting Devices,” Thin Solid Films, vol. 417, pp. 120-126, 2002. [20] B. M. Henry, A. G. Erlat, A. McGuigan, C.R.M. Grovenor, G.A.D. Briggs, Y. Tsukahara, T. Miyamoto, N. Noguchi, and T. Niijima, “Characterization of Transparent Aluminium Oxide and Indium Tin Oxide Layers on Polymer Substrates,” Thin Solid Films, vol. 382, pp. 194-201, 2001. [21] A. P. Roberts, B. M. Henry, A. P. Sutton, C.R.M. Grovenor, G.A.D. Briggs, T. Miyamoto, M. Kano, Y. Tsukahara, and M. Yanaka, “Gas Permeation in Silicon-Oxide/Polymer(SiOx/PET) Barrier Films: Role of the Oxide Lattice, Nano-Defects and Macro-Defects,” J. Membr. Sci., vol. 208, pp. 75-88, 2002. [22] K. Koski, J. Hölsä, P. Juliet, Z.H. Wang, R. Aimo, and K. Pischow, “Characterization of Aluminium Oxide Thin Films Deposition on Polycarbonate Substrate by Reactive Magnetron Sputtering,” Mater. Sci. and Eng. B, vol. 65, pp. 94-105, 1999. [23] D. S. Wuu, T. N. Chen, C. C. Wu, C. C. Chiang, Y. P. Chen, and R. H. Horng, “Effects of Plasma Pretreatment on Silicon Nitride Barrier Films on Polycarbonate Substrates,” Thin Solid Films, vol.514, pp. 188-192, 2006. [24] “PERMATRAN-W Model 3/61 Operator’s Manual,” Mocon, Chap. 4-5. [25] “OX-TRAN Model 2/61 Operator’s Manual,” Mocon Chap. 4-5. [26] G. Nisato, P. C. P. Bouten, P. J. Slikkerveer, W. D. Bennett, G. L. Graff, N. Rutherford, and L. Wiese, “Evaluating High Performance Diffusion Barrier: the Calcium Test,” Proc. Asia Display/IDW01, pp. 1435, 2001. [27] 林漢斌,”Development and Application of Organic/Inorganic Multilayer Coatings on Plastic Substrates,” 國立中興大學材料科學與工程學系研究所碩士論文,第56-57頁,2005. [28] J. K. Choi, D. H. Kim, J. Lee, and J. B. Yoo, “Effects of Process Parameters on the Growth of Thick SiO2 Using Plasma Enhanced Chemical Vapor Deposition with Hexamethyldisilazane,” Surf. Coat. Technol., Vol. 131, pp. 136-140, 2000. [29] B. Kim, D. W. Kim, and S. S. Han, “Refraction Properties of PECVD of Silicon Nitride Films,” Vacuum, vol. 72, pp. 385-392, 2004. [30] W. Huang, X. Wang, M. Sheng, L. Xu, F. Stubhan, L. Luo, T. Feng, X. Wang, F. Zhang, and S. Zou, “Low Temperature PECVD SiNx Films Applied in OLED Packaging.,” Mater. Sci. and Eng. B, vol. 98, pp. 248-254, 2003. [31] T. Takagi, K Takechi, Y.Nakagawa, Y. Watabe, and S. Nishida, “High Rate Deposition of a-Si: H and a-SiNx: H by VHF PECVD,” Vacuum. vol. 51 pp. 751-755, 1998. [32] Z. Chen, B. Cotterell, W. Wang, E. Guenther, and S. Chua, “A Mechanical Assessment of Flexible Optoelectronic Devices,” Thin Solid Films. vol. 394, pp. 202-206, 2001. [33] Weast RC. CRC, ”Handbook of Chemistry and Physics,” 76th edition. Boca Raton, FL: CRC Press, 1995-1996. [34] 黃渭豪,” Development and Application of Gas Barrier Coatings,” 國立中興大學材料科學與工程學系研究所碩士論文,第43-44頁,2009. [35] M. I. Alayo, I. Pereyra, W. L. Scopel, and M. C. A. Fantini, “On the Nitrogen and Oxygen Incorporation in Plasma-Enhanced Chemical Vapor Deposition (PECVD) SiOxNy Films,” Thin Solid Films, vol. 402, pp. 154-161, 2002. [36] M. F. Doerner and W. D. Nix, “Stresses and Mechanical Properties of Thin Films on Substrates,” CRC Critical Review in Solid State and Materials Science, vol. 14 pp. 225-268, 1988. [37] D. S. Wuu, T. N. Chen, E. Lay, C. H. Liu, C. H. Chang, H. F. Wei, L. Y. Jiang, H. U. Lee, and Y. Y. Chang, “Transparent Barrier Coatings on High Temperature Resisting Polymer Substrates for Flexible Electronic Applications,” J. Electrochem. Soc., vol. 157, pp. C47-C51, 2009. [38] D. G. Shaw, and M. G. Langlois, “Some Performance Characteristics of Evaporated Acrylate Coatings,” in Proc. 7th Int. Conf. Vacuum Web Coating, pp. 268-276, 1993. [39] 張佳瑩,”Phase Retardation of Rubbed and Photoilluminated Polyimide Films and Its Relationship with Anchoring Strength,” 國立交通大學電子物理系所碩士論文,第40-41頁,2006. [40] S. Ando, T. Sawada, and S. Sasaki,” In-Plane Birefringent Optical Material 2: Control of Optical Retardation Using Spontaneous Molecular Orientation,” vol. 10, pp. 169-178, 1999. [41] 李正中,薄膜光學與鍍膜技術,藝軒圖書出版社,第2-3頁,2002。
摘要: 薄型化可撓式有機發光元件具有體積薄、質量輕及可應用於軟性電子產品等優點,被認定是顯示器的發展趨勢。由於有機發光元件的電極與發光層對水/氧氣相當敏感,尤其是發光層易與水發生反應,故有機發光元件封裝的阻水阻氧能力特別受到重視。 本研究以電漿輔助化學氣相沉積法,鍍製無機薄膜SiNx、parylene於聚乙醯胺基板,分別探討不同製程參數對該兩種薄膜特性的影響。接著製作一至四對由SiNx、parylene堆疊的多層氣體阻隔膜,利用鍍鈣測試法量測多層鍍膜水氣透過率。為了進一步提升SiNx/parylene堆疊結構的抗可撓性,通過調整射頻功率,和導入高分子聚合物薄膜 /聚-對二甲苯的厚度做為無機多層結構的緩衝層,以降低薄膜內應力,再搭配軟體ANSYS和RSoft的模擬應力及光學特性作為薄膜堆疊設計參考依據使多重製程參數最佳化,本實驗設計之含聚-對二甲苯緩衝層之多層膜,一方面可以改善無機膜堆疊結構抗可撓不佳之問題,並降低表面粗糙度,另一方面相較市面上SiNx/parylene交互堆疊技術,可大幅降低製程時間。經實驗結果顯示,本結構在經過撓曲測試1000次後,水氣透過率仍可低於7.05×10-5 g/m2-day、撓曲直徑為1.4公分和光穿透度在90 %以上。 關鍵字︰可撓式、水氧氣透過率、有機發光元件、鈣測法、電漿輔助化學氣相沉積
Because of light weight and easy portability, highly-efficiency flexible thin-film electronic products will generate many potential applications. However, the light emitting layer in the organic light emitting device(OLED) are readily susceptible to the moisture and oxygen which not only reduce the lifetime but pose safety problems. Therefore, how to limit the permeation of oxygen and water vapor into the OLED to such a small level by a suitable multilayer barrier package becomes an important issue. In this work, samples with various or barrier materials such as respective silicon nitrides (SiNx), parylene and pairs of SiNx and parylene, are prepared using plasma-enhanced chemical vapor deposition (PECVD). In order to evaluate the effect of fabrication parameters on the characteristics of these barrier materials, with optimized fabrication parameters, various pairs of multilayer stacks containing SiNx and parylene are prepared to investigate the transmission rates of water vapor using a calcium (Ca) coating test and simulation by ANSYS and RSoft. ANSYS and RSoft softwares can be used to simulate the stress and optical properties for multilayer stacks design and optimization of process parameters. This study proposes an optinum structure for barrier materials (4 pair of SiNx /parylene stack) where the parylene is used as the insertion layer to smooth and strengthen the interfaces or surfaces of layers. After conducting the bending test for 1000 times, the water vapor transmission rate (WVTR) still keeps being below 7.05 × 10-5 g/m2-day under such a measurement environment (10 days at 25 ℃, 50% in relative humidity) the radius of curvature is 1.4 cm and the transmittance is above 90 %. Keyword:flexible、OLED、WVTR、Ca test、PECVD
URI: http://hdl.handle.net/11455/10838
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.