Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10845
標題: 投影式電容觸控面板金屬導線蝕刻角度最佳化之研究
The research of optimized metal wire etching angle for Projective capacitive touch panels
作者: 許芫榤
Hsu, Yuan-Chieh
關鍵字: TFT
薄膜電晶體
Mo-Nb/Al-Nd
Indium Tin Oxide
SiO2
Touch panel
HNO3
CH3COOH
H3PO4
DC Sputter
RF Sputter
鉬-鈮/鋁-釹
氧化銦錫
二氧化矽
觸控式面板
硝酸
醋酸乙酸
磷酸
直流磁控濺鍍
射頻磁控濺鍍
出版社: 材料科學與工程學系所
引用: [1] 監修 三谷 雄二, ”タツチパネルの基礎と応用”,テクノタイムグ社 [2] “デイスプレイ”Monthly Display,FPD/新照明/太陽電池の總技術情報12Month2009,Vol 15 No.12,TECHNNDS [3] ”Touch Panel”,月刊デイスプレイ別冊,最新タツチパネル技術,(株) テクノタイムグ社 [4] 劉湘明,”ITO觸控面板之電阻控制模式比較”,南台科技大學電機工程研究所碩士學位論文,中華民國93年7月 [5] 無線電技術 412 期(http://www.electronictechnology.com/tc/mgad.php?sublnk=article&mcontentid=1571&contentid=NDEyXzEvaW5kZXguaHRtbA) [6] 蔡東璋、陳夢涵 ,” 統計製程管制應用於平面顯示器之鋁金屬濕蝕刻製程能力探討” ,工業技術研究院電子工業中華民國品質學會第 40 屆年會高雄市分會第 30 屆年會 2004/11/6 暨第 10 屆全國品質管理研討會論文集,A2-7,第64-73 頁。 [7] A.J. Steckl and G. Mohammed, “The Effect of Ambient Atmosphere in the Annealing of Indium Tin Oxides Films”, J. Appl. Phys., vol.51 (7), pp. 3890-3895, 1980. [8]許生,顏遠全,“國際光電顯示與連接” ,中華民國91年9月。 [9] M. Quaas, C. Eggsl, H. Wulff, “Structural studies of ITO thin films the Rietveld method”, Thin Solid Films, vol. 332, pp.277-281, 1998. [10]李正中,”薄膜光學與製程技術”,藝軒圖書出版社,2006。 [11] Jaydeep Sarkar,Tien-Heng Huang, Lih-Ping Wang, Peter H. McDonald,“ A combinatorial approach of developing alloy thin films using co-sputtering technique for displays”, Chi-Fung Lo1 & Paul S. Gilman Science in China Series E: Technological Sciences, SCIENCE IN CHINA PRESS, 2009 [12] J. H. Moore, C. C. Davis and M. A. Coplan, “Building scientific apparatus”, Addison-Wesley Publishing Company, pp.173, 1983. [13] 鍾崇仁,”使用二氧化矽薄膜作為質子交換鈮(鉭)酸鋰表面聲波溫度補償之研究”,中山大學電機工程學系碩士論文,中華民國92年7月 [14] Toshioaki Arai, Atsuya Makita, Yasunobu Hiromasu, Hiroshi Takatsuji, “ Mo-capped Al-Nd alloy for both gate and data bus line of liquid crystal display”,Thin solid Films,Vol. 383, pp.287-291, 2001 [15] Tsukuba Research Center, Chuo, Ami, Inashiki, Tsukuba Laboratory, Chuo, Ami, Inashiki, Ibaraki, “Anodization of Al-Nd alloy films in nonaqueous electrolyte solutions for TFT-LCD application” , Electrochimica Acta, Vol. 47, pp. 217-223, 2001. [16] H.R. Han, Y.J. Lee, G.Y. Yeom, K.H. Oh, M.P. Hong, “Dry etch characteristics of Al-Nd films for TFT-LCD”, Surface and Coatings Technology, pp. 133、134、611、606, 2000. [17] Toshiaki Arai, Atsuya Makita, Yasunobu Hiromasu, Hiroshi Takatsuji “Mo-capped Al-Nd alloy for both gate and data bus lines of liquid crystal displays” , Thin Solid Films, Vol. 383, pp. 287-291, 2001. [18] T.Ohnishi, E.Iwamura,K.Takagi, “Effects of Nd content in Al thin films on hillock formation", J.Vac.Sci.Technol, Vol. A15, pp.2339-2348, 1997. [19]T.Ohnishi, E.Iwamura, K.Takagi,“Morphology of sputter deposited Al alloy films", Thin Solid Films, Vol.340, pp.306-316, 1999. [20] 洪大偉,”鋁釹與鉬鈮雙層閘極結構在蝕刻機制之邊緣輪廓及傾斜角研究“,台北科大化工研究所碩士論文,中華民國95年6月 [21] M.Bender, W.Seelig, C.Daube, H.Frankenberger, B.Ocker, J.Stollenwerk “Dependence of oxygen flow on optical and electrical properties of DC-magnetron”, Thin solid Films, Vol. 326, pp.72-77, 1998. [22] C.Choi., W.J. Lee, J.K., S.O. Jung, W.J. Lee, W.S. Kim, S.J. Kim, C. Yoon, “ Effects of oxygen partial pressure on the microstructure and electrical properties of indium tin oxide film prepared by d.c. magnetron sputtering”, Thin solid Films , Vol. 258, pp.274-278, 1995. [23] A.N.H. Al-Ajili, S.C. Bayliss, “A study of the optical,electrical and structural properties of reactively sputtered InOx and ITOx thin films”, Thin solid Films, Vol. 305, pp.116-123, 1997. [24] S. K. Choi and J. I. Lee, “Effect of film density on electrical properties of indium tin oxide films deposited by dc magnetron reactive sputtering”, J. Vac. Sci. Technol. A, Vol. 19, pp.2043-2047, 2001. [25] Milton Ohring, “Materials Science of Thin Film (Deposition and Structure)”, ACADEMIC PRESS. [26] M. Bender, J. Trube,J. Stollenwerk, “Deposition of transparent and conducting indium tin oxide films by the r.f.-superimposed DC sputtering technology”, Thin solid films,vol. 354, pp.100-105, 1999. [27] W. De Bosscher, H. Delrue, J. VanHolsbeke, S. Matthews, A. Blondeel, “Rotating Cylindrical ITO Targets for Large Area Coating”, 2005 Society of Vacuum Coaters, 48th Annual Technical Conference Proceedings, pp.111-115, 2005. [28] D.R. Gibson, I.T. Brinkley, G.H. Hall,E.M. Waddell and J.M. Walls, “Properties of indium tin oxide deposited using reactive closed field magnetron sputtering”, 2006 Society of Vacuum Coaters, 49th Annual Technical Conference Proceedings, 2006. [29] W.-M. Gnehr, U. Hartung, T. Kopte “Pulsed Plasmas for Reactive Deposition of ITO Layers”, 2005 Society of VacuumCoaters, 48th Annual Technical Conference Proceedings, pp.312-316, 2005. [30] R.N.Joshi, V.P.Singh, J.C. McClure, “Characteristics of indium tin oxide films deposited by r.f. magnetron sputtering”, Thin solid Films, Vol.257, pp.32-35, 1995. [31] P.F. Carcia, R.S. McLean, M.H. Reilly, Z.G. Li, “Resistivity and Microstructure Issues in Indium-Oxide Based Films Grown by RF Magnetron Sputtering on Flexible Polyester Substrates”, Society of Vacuum Coaters, 6th Annual Technical Conference Proceedings, pp. 195-199, 2003 [32] C. May, J.StruÈmpfel, “ITO coating by reactive magnetron sputtering-comparison of properties from DC and MF processing”, Thin solid films, vol.351, pp.48-52, 1999. [33] J.L. Grieser, “Comparison of ITO Films Produced by Standard D.C. Sputtering and Ion Beam Assisted Sputtering”, 1995 Society of Vacuum Coaters, 38th Annual Technical Conference Proceedings, pp.155-162, 1995 [34] J. Matthijn Dekkers, Guus Rijnders, Dave H. A. Blank, “Role of Sn doping in In2O3 thin films on polymer substrates by pulsed-laser deposition at room temperature”, APPLIED PHYSICS LETTERS, pp. 88, 2006. [35] K.Utusumi,H.Iigusa, “The Effect of SnO2 Concentration on the Electrical and Optical Properties of In2O3-SnO2 Films”, TOSOH Research & Technology Review , Vol.47, 2003 [36] 莊達人,“VLSI製造技術”,高立圖書有限公司總經銷新科技書局,中華民國89年6月20日四版六刷 [37]J Venables, “Nucleation and growth of Thin Films, Rep. Prog. Phys., vol.47, pp.399, 1984. [38] J. A. Thornton, “Influence of Apparatus Geometry and Deposition conditions on the Structure and Topography of Thick Sputtered Coatings”, J. Vac. Sci. Technol. 11(4), pp.666, 1974. [39] 蔡宗典,”超薄ITO透明電南台科技大學電機膜應用在觸控面板之研究”,中央大學光電科學研究所碩士學位論文,中華民國97年7月 [40] Website: http://www.southnorth.com.tw/p01.htm [41] http://tw.knowledge.yahoo.com/question/question?qid=1004120400022
摘要: 薄膜電晶體(TFT)製程中需經歷多次成膜,而第一層之閘極金屬對後續絕緣層或金屬層之覆蓋性相對重要。此一關鍵即是閘極金屬蝕刻後邊緣需有平緩之傾斜角,以利各層之覆蓋。目前薄膜電晶體(TFT)金屬導線用於閘極(Gate)、源極/汲極(S/D),鉬(Mo)/鋁-釹(Al-Nd) 雙層結構用於閘極(Gate)、鉬(Mo)/鋁-釹(Al-Nd) /鉬(Mo)三層結構用於源極/汲極(S/D );現今觸控式面板(Touch panel)也是利用鍍膜方式沉積三層堆疊的金屬結構,蝕刻走線形成金屬導線。 本文利用不同合金成分的金屬靶,使用直流磁控濺鍍(DC sputter)方式,在玻璃基板表面沉積金屬薄膜,再利用濕蝕刻方式,硝酸(HNO3 8.5%)/醋酸(CH3COOH 4%)/磷酸(H3PO4 65%)/蝕刻溫度45℃條件測試單層合金的蝕刻速率,尋求最適合的合金成分組合,鉬-鈮(Mo-Nb 10at%)/鋁-釹(Al-Nd 1wt%=0.2at%)/鉬-鈮(Mo-Nb 10at%),並找出三層金屬堆疊最佳膜厚搭配比100&Aring;/1700~2100&Aring;/500&Aring;做出優化的金屬蝕刻角度<60°,使製程較易控制,讓二氧化矽(SiO2)製程覆蓋之穩定性更佳,提升金屬導線的耐化性及信賴性。
In the process of manufacturing thin film transistor (TFT), there are several thin film patterns need to be established. However, with the second layer, isolation, covering on the first layer, gate, which made with metal, the covering quality is relatively more important to TFT capability through the whole manufacture process. The key factor influences the covering quality due to gate profile. The gate profile with a mild slope facilitates the rest of layers to have a proper covering performance. At present day, TFT applies metal as the conductor material to gate, source and drain, Mo/Al-Nd double metal layers structure applies to gate, Mo/Al-Nd/Mo triple metal layers structure applies to source and drain. For modern touch penal also applies triple metal layers structure made with depositing and etching method to form metal conductor trace. In this article, we apply several different component metal targets with DC sputter method. Deposit thin metal film on glass substrate, then we wet etch the thin metal film by the etchant compose of HNO3 8.5%, CH3COOH 4% and H3PO4 65% with temperature at 45C, we put single layer alloy film into the etching condition and monitor the etching rate. Then we have a conclusion that the most proper component of alloy ratio as Mo-Nb 10at%/Al-Nd 1wt%=0.2at%/Mo-Nb 10at%, and the most proper thickness ratio for triple layers as Mo-Nb(100&Aring;) / Al-Nd(1700~2100&Aring;) / Mo-Nb(500&Aring;). Combining the condition above etchant, alloy ratio and thickness ratio for triple layers, we can have a superior profile of triple layers with slope angle under 60 to generate an easier control system to manufacture process and more stably covering performance with SiO2 layer and furthermore increase the chemical resistance and reliability.
URI: http://hdl.handle.net/11455/10845
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.