Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10851
標題: 磺酸化導電高分子/奈米碳管複合材料之製備與特性研究
Preparation and Characterization of Sulfonated Conducting Polymer/Carbon Nanotube Composites
作者: 林彥文
Lin, Yen-Wen
關鍵字: Sulfonated Conducting Polymer
磺酸化導電高分子
Carbon Nanotube
Composite
奈米碳管
複合材料
出版社: 材料科學與工程學系所
引用: 1. S. Kirkpatrick, Percolation and conduction, Rev. Mod. Phys. 45 (1973) 574-88. 2. A. Celzard, E. McRae, C. Deleuze, M. Dufort, G. Furdin and J. F. Marêché, Critical concentration in percolating systems containing a high-aspect-ratio filler, Phys. Rev. B 53 (1996) 6209-6214. 3. S. V. Frolov, M. Ozaki, W. Gellermann, Z. V. Vardeny and K. Yoshino, Mirrorless lasing in conducting polymer poly(2,5-dioctyloxy-p-phenylenevinylene) films, Jpn. J. Appl. Phys. 35 (1996) L1371-L1373. 4. D. M. Mohilner, R. N. Adams and W. J. Argersinger, Investigation of the kinetics and mechanism of the anodic oxidation of aniline in aqueous sulfuric acid solution at a platinum electrode, J. Am. Chem. Soc. 84 (1962) 3618-3622. 5. S. Venkatachalam and P. V. Prabhakaran, Oligomeric phthalocyanine modified polyaniline - an electrode material for use in aqueous secondary batteries, Synth. Met. 97 (1998) 141-146. 6. K. S. Ryu, K. M. Kim, S. G. Kang, G. J. Lee, J. Joo and S. H. Chang, Electrochemical and physical characterization of lithium ionic salt doped polyaniline as a polymer electrode of lithium secondary battery, Synth. Met. 110 (2000) 213-217. 7. Z. M. Tahir, E. C. Alocilja and D. L. Grooms, Polyaniline synthesis and its biosensor application, Biosens. Bioelectron. 20 (2005) 1690-1695. 8. M. Trojanowicz, O. Geschke, T. Krawczyk and K. Cammann, Biosensors based on oxidases immobilized in various conducting polymers, Sens. Actuators, B, Chem. 28 (1995) 191-199. 9. P. Li, T. C. Tan and J. Y. Lee, Corrosion protection of mild steel by electroactive polyaniline coatings, Synth. Met. 88 (1997) 237-242. 10. A. A. Pud, G. S. Shapoval, P. Kamarchik, N. A. Ogurtsov, V. F. Gromovaya, I. E. Myronyuk and Y. V. Kontsur, Electrochemical behavior of mild steel coated by polyaniline doped with organic sulfonic acids, Synth. Met. 107 (1999) 111-115. 11. G. Gustafsson, Y. Cao, G. M. Treacy, F. Klavetter, N. Colaneri and A. J. Heeger, Flexible light-emitting diodes made from soluble conducting polymers, Nature 357 (1992) 477-479. 12. G. Natta, G. Mazzanti and P. Corradini, Stereospecific polymerization of acetylene, Atti. Accad. naz. Lincei, Rend. Classe Sci. fis. mat. nat. 25 (1958) 3-12. 13. H. Shirakawa and S. Ikeda, Infrared spectra of poly(acetylene), Polym. J. 2 (1971) 231-244. 14. T. Ito, H. Shirakawa and S. Ikeda, Simultaneous polymerization and formation of polyacetylene film on the surface of concentrated soluble Ziegler-type catalyst solution, J. Polym. Sci., Polym. Chem. Ed. 12 (1974) 11-20. 15. T. Ito, H. Shirakawa and S. Ikeda, Thermal cis-trans isomerization and decomposition of polyacetylene, J. Polym. Sci., Polym. Chem. Ed. 13 (1975) 1943-1950. 16. C. K. Chiang, C. R. Fincher Jr., Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau and A. G. MacDiarmid, Electrical conductivity in doped polyacetylene, Phys. Rev. Lett. 39 (1977) 1098-1101. 17. H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, and A. J. Heeger, Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x, J. Chem. Soc., Chem. Commun. (1977) 578-580. 18. J. L. Brédas, S. R. Marder and W. R. Salaneck, Alan J. Heeger, Alan G. MacDiarmid, and Hideki Shirakawa, Macromolecules 35 (2002) 1137-1139. 19. Y. S. Negi and P. V. Adhyapak, Development in polyaniline conducting polymers, J. Macromol. Sci., Polym. Rev. C42 (2002) 35-53. 20. J. S. Miller, Conducting polymers — materials of commerce, Adv. Mater. 5 (1993) 671-676. 21. Y. Wei, W. W. Focke, G. E. Wnek, A. Ray and A. G. MacDiarmid, Synthesis and electrochemistry of alkyl ring-substituted polyanilines, J. Phys. Chem. 93 (1989) 495-499. 22. D. Macinnes and B. L. Funt, Poly-o-methoxyaniline: A new soluble conducting polymer, Synth. Met. 25 (1988) 235-242. 23. A. Watanabe, K. Mori, A. Iwabuchi, Y. Iwasaki, Y. Nakamura and O. Ito, Electrochemical polymerization of aniline and N-alkylanilines, Macromolecules 22 (1989) 3521-3525. 24. S. A. Cheng and G. W. Hwang, Water-soluble self-acid-doped conducting polyaniline: structure and properties, J. Am. Chem. Soc. 117 (1995) 10055-10062. 25. J. Yue and A. J. Epstein, Synthesis of self-doped conducting polyaniline, J. Am. Chem. Soc. 112 (1990) 2800-2801. 26. E. V. Strounina, L. A. P. Kane-Maguire and G. G. Wallace, Synth. Met. 106 (1999) 129-137. 27. H. He, J. Zhu, N. J. Tao, L. A. Nagahara, I. Amlani and R. Tsui, A conducting polymer nanojunction switch, J. Am. Chem. Soc. 123 (2001) 7730-7731. 28. J. Huang, S. Virji, B. H. Weiller and R. B. Kaner, Polyaniline nanofibers: facile synthesis and chemical sensors, J. Am. Chem. Soc. 125 (2003) 314-315. 29. S. Iijima, Helical microtubules of graphitic carbon, Nature 354 (1991) 56-58. 30. M. Moniruzzaman and K. I. Winey, Polymer nanocomposites containing carbon nanotubes, Macromolecules 39 (2006) 5194-5205. 31. J. N. Coleman, U. Khan, W. J. Blau and Y. K. Gun'ko, Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites, Carbon 44 (2006) 1624-1652. 32. M. Baibarac and P. Gomez-Romero, Nanocomposites based on conducting polymers and carbon nanotubes: from fancy materials to functional applications, J. Nanosci. Nanotechnol. 6 (2006) 289-302. 33. A. Malinauskas, J. Malinauskienė and A. Ramanavičius, Conducting polymer-based nanostructurized materials: electrochemical aspects, Nanotechnology 16 (2005) R51-R62. 34. T. L. Vigo, Intelligent fibrous materials, J. Text. Inst. 90 (1999) 1-13. 35. D M Brown and M T Pailthorpe, Antistatic fibres and finishes, Rev. Prog. Coloration 16 (1986) 8-15. 36. A. T. Ponomarenko, V. G. Shevchenko and N. S. Enikolopyan, Formation processes and properties of conducting polymer composites, Adv. Polym. Sci. 96 (1990) 125-147. 37. N. J. Pinto, I. Ramos, R. Rojas, P. C. Wang and A. T. Johnson Jr., Electric response of isolated electrospun polyaniline nanofibers to vapors of aliphatic alcohols, Sens. Actuators B 129 (2008) 621-627. 38. D. D. Rossi, A. D. Santa and A. Mazzoldi, Dressware: wearable hardware, Mater. Sci. Eng. C 7 (1999) 31-35. 39. Y. Cao, P. Smith and A. J. Heeger, Counter-ion induced processibility of conducting polyaniline and of conducting polyblends of polyaniline in bulk polymers, Synth. Met. 48 (1992) 91-97. 40. Y. Cao and P. Smith, Liquid-crystalline solutions of electrically conducting polyaniline, Polymer 34 (1993) 3139-3143. 41. W. S. Yin and E. Ruckenstein, Soluble polyaniline co-doped with dodecyl benzene sulfonic acid and hydrochloric acid, Synth. Met. 108 (2000) 39-46. 42. J. Y. Lee, D. Y. Kim and C. Y. Kim, Synthesis of soluble polypyrrole of the doped state in organic solvents, Synth. Met. 74 (1995) 103-106. 43. J. Y. Lee, K. T. Song, S. Y. Kim, Y. C. Kim, D. Y. Kim and C. Y. Kim, Synthesis and characterization of soluble polypyrrole, Synth. Met. 84 (1997) 137-140. 44. Y. Shen and M. Wan, Soluble conductive polypyrrole synthesized by in situ doping with β-naphthalene sulphonic acid, J. Polym. Sci.: Part A: Polym. Chem. 35 (1997) 3689-3695. 45. Y. Shen and M. Wan, In situ doping polymerization of pyrrole with sulfonic acid as a dopant, Synth. Met. 96 (1998) 127-132. 46. E. J. Oh and K. S. Jang, Synthesis and characterization of high molecular weight, highly soluble polypyrrole in organic solvents, Synth. Met. 119 (2001) 109-110. 47. E. J. Oh, K. S. Jang and A. G. MacDiarmid, High molecular weight soluble polypyrrole, Synth. Met. 125 (2002) 267-272. 48. M. Leclerc, J. Guay and L. H. Dao, Synthesis and characterization of poly- (alkylanilines), Macromolecules 22 (1989) 649-653. 49. M. V. Kulkarni and A. K. Viswanath, Comparative studies of chemically synthesized polyaniline and poly(o-toluidine) doped with p-toluene sulphonic acid, Eur. Polym. J. 40 (2004) 379-384. 50. Y. Wei, W. W. Focke, G. E. Wnek, A. Ray and A. G. MacDiarmid, Synthesis and electrochemistry of alkyl ring-substituted polyanilines, J. Phys. Chem. 93 (1989) 495-499. 51. R. L. Elsenbaumer, K. Y. Jen and R. Oboodi, Processible and environmentally stable conducting polymers, Synth. Met. 15 (1986) 169-174. 52. D. I. Kang, W. J. Cho, H. W. Rhee and C. S. Ha, Electrochemical properties of poly(N-substituted pyrrole)s obtained in TBADS/CAN electrolyte system, Synth. Met. 69 (1995) 503-504. 53. H. S. O. Chan, S. C. Ng, W. S. Sim, K. L. Tan and B. T. G. Tan, Preparation and characterization of electrically conducting copolymers of aniline and anthranilic acid: evidence for self-doping by x-ray photoelectron spectroscopy, Macromolecules 25 (1992) 6029-6034. 54. M. M. Ayad, N. A. Salahuddin, A. K. Abou-Seif and M. O. Alghaysh, Chemical synthesis and characterization of aniline and o-anthranilinc acid copolymer, Eur. Polym. J. 44 (2008) 426-435. 55. S. S. Pandey, S. Annapoorni and B. D. Malhotra, Synthesis and characterization of poly(aniline-co-o-anisidine): a processable conducting copolymer, Macromolecules 26 (1993) 3190-3193. 56. D. Kumar, Synthesis and characterization of poly(aniline-co-o-toluidine) copolymer, Synth. Met. 114 (2000) 369-372. 57. X. G. Li, L. X. Wang, M. R. Huang, Y. Q. Lu, M. F. Zhu, A. Menner and J. Springer, Synthesis and characterization of pyrrole and anisidine copolymers, Polymer 42 (2001) 6095-6103. 58. X. G. Li, M. R. Huang, L. X. Wang, M. F. Zhu, A. Menner and J. Springer, Synthesis and characterization of pyrrole and m-toluidine copolymers, Synth. Met. 123 (2001) 435-441. 59. X. G. Li, R. F. Chen, M. R. Huang, M. F. Zhu and Q. Chen, Synthesis of a soluble pyrrole copolymer with phenetidine, J. Polym. Sci., Polym. Chem. 42 (2004) 2073-2092. 60. S. C. Ng, H. S. O. Chan, H. H. Huang and P. K. H. Ho, Poly(o-aminobenzyl- phosphonic acid): a novel water soluble, self-doped functionalized polyaniline, J. Chem. Soc., Chem. Commun. (1995) 1327-1328. 61. C. DeArmitt, S. P. Armes, J. Winter, F. A. Uribe, S. Gottesfeld and C. Mombourquette, A novel N-substituted polyaniline derivative, Polymer 34 (1993) 158-162. 62. H. C. Li and E. Khor, A collagen-polypyrrole hybrid: influence of 3-butanesulfonate substitution, Macromol. Chem. Phys. 196 (1995) 1801-1812. 63. M. T. Nguyen, P. Kasai, J. L. Miller and A. F. Diaz, Synthesis and properties of novel water-soluble conducting polyaniline copolymers, Macromolecules 27 (1994) 3625-3631. 64. M. T. Nguyen and A. F. Diaz, Water-soluble poly(aniline-co-o-anthranilic acid) copolymers, Macromolecules 28 (1995) 3411-3415. 65. V. Prévost, A. Petit and F. Pla, Studies on chemical oxidative copolymerization of aniline and o-alkoxysulfonated anilines II. mechanistic approach and monomer reactivity ratios, Eur. Polym. J. 35 (1999) 1229-1236. 66. W. Yin and E. Ruckenstein, Water-soluble self-doped conducting polyaniline copolymer, Macromolecules 33 (2000) 1129-1131. 67. W. J. Bae, K. H. Kim, Y. H. Park and W. H. Jo, A novel water-soluble and self- doped conducting polyaniline graft copolymer, Chem. Commun. (2003) 2768-2769. 68. W. J. Bae, K. H. Kim and W. H. Jo, A water-soluble and self-doped conducting polypyrrole graft copolymer, Macromolecules 38 (2005) 1044-1047. 69. P. S. Rao and D. N. Sathyanarayana, Effect of the sulfonic acid group on copolymers of aniline and toluidine with m-aminobenzene sulfonic acid, J. Polym. Sci., Polym. Chem. 40 (2002) 4065-4076. 70. J. Yue and A. J. Epstein, Synthesis of self-doped conducting polyaniline, J. Am. Chem. Soc. 112 (1990) 2800-2801. 71. J. Yue, Z. H. Wang, K. R. Cromack, A. J. Epstein and A. G. MacDiarmid, Effect of sulfonic acid group on polyaniline backbone, J. Am. Chem. Soc. 113 (1991) 2665-2671. 72. P. Hany, E. M. Geniès and C. Santier, Polyanilines with covalently bonded alkyl sulfonates as doping agent. Synthesis and properties, Synth. Met. 31 (1989) 369-378. 73. S. A. Chen and G. W. Hwang, Synthesis of water-soluble self-acid-doped polyaniline, J. Am. Chem. Soc. 116 (1994) 7939-7940. 74. S. A. Chen and G. W. Hwang, Water-soluble self-acid-doped conducting polyaniline: structure and properties, J. Am. Chem. Soc. 117 (1995) 10055-10062. 75. S. A. Chen and G. W. Hwang, Structure characterization of self-acid-doped sulfonic acid ring-substituted polyaniline in its aqueous solutions and as solid film, Macromolecules 29 (1996) 3950-3955. 76. M. Y. Hua, Y. N. Su and S. A. Chen, Water-soluble self-acid-doped conducting polyaniline: poly(aniline-co-N-propylbenzenesulfonic acid-aniline), Polymer, 41 (2000) 813-815. 77. H. K. Lin and S. A. Chen, Synthesis of new water-soluble self-doped polyaniline, Macromolecules 33 (2000) 8117-8118. 78. S. Ito, K. Murata, S. Teshima, R. Aizawa, Y. Asako, K. Takahashi and B. M. Hoffman, Simple synthesis of water-soluble conducting polyaniline, Synth. Met. 96 (1998) 161-163. 79. K. Takahashi, K. Nakamura, T. Yamaguchi, T. Komura, S. Ito, R. Aizawa and K. Murata, Characterization of water-soluble externally HCl-doped conducting polyaniline, Synth. Met. 128 (2002) 27-33. 80. K. S. Jang, H. Lee and B. Moon, Synthesis and characterization of water soluble polypyrrole doped with functional dopants, Synth. Met. 143 (2004) 289-294. 81. Y. Şahin, K. Pekmez and A. Yıldız, Electrochemical synthesis of self-doped polyaniline in fluorosulfonic acid/acetonitrile solution, Synth. Met. 129 (2002) 107-115. 82. Y. Şahin, K. Pekmez and A. Yıldız, Electropolymerization and in situ sulfonation of aniline in water-acetonitrile mixture containing FSO3H, Synth. Met. 131 (2002) 7-14. 83. Y. Şahin, A. Aydın, Y. A. Udum, K. Pekmez and A. Yıldız, Electrochemical synthesis of sulfonated polypyrrole in FSO3H/acetonitrile solution, J. Appl. Polym. Sci. 93 (2004) 526-533. 84. A. G. Whittaker and G. M. Wolten, Carbon: a suggested new hexagonal crystal form, Science 178 (1972) 54-56. 85. T. W. Ebbesen and P. M. Ajayan, Large-scale synthesis of carbon nanotubes, Nature 358 (1992) 220-222. 86. S. Iijima and T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter, Nature 363 (1993) 603-605. 87. D. S. Bethune, C. H. Klang, M. S. De Vries, G. Gorman, R. Savoy, J. Vazquez and R. Beyers, Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls, Nature 363 (1993) 605-607. 88. M. M. J. Treacy, T. W. Ebbesen and J. M. Gibson, Exceptionally high Young''s modulus observed for individual carbon nanotubes, Nature 381 (1996) 678-680. 89. E. W. Wong, P. E. Sheehan and C. M. Lieber, Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes, Science 277 (1997) 1971-1975. 90. B. I. Yakabson and R. E. Smalley, Fullerene nanotubes: C1,000,000 and beyond, Am. Sci. 85 (1997) 324-337. 91. S. Iijima, C. Brabec, A. Maiti and J. Bernholc, Structural flexibility of carbon nanotubes, J. Chem. Phys. 104 (1996) 2089-2092. 92. L. X. Benedict, S. G. Louie and M. L. Cohen, Heat capacity of carbon nanotubes, Solid State Commun. 100 (1996) 177-180. 93. J. Che, T. Çagin and W. A. Goddard III, Thermal conductivity of carbon nanotubes, Nanotechnology 11 (2000) 65-69. 94. S. Berber, Y. K. Kwon and D. Tománek, Unusually high thermal conductivity of carbon nanotubes, Phys. Rev. Lett. 84 (2000) 4613-4616. 95. M. A. Osman and D. Srivastava, Temperature dependence of the thermal conductivity of single-wall carbon nanotubes, Nanotechnology 12 (2001) 21-24. 96. M. Terrones, W. K. Hsu, H. W. Kroto and D. R. M. Walton, Nanotubes: a revolution in materials science and electronics, Top. Curr. Chem. 199 (1999) 189-234. 97. N. Hamada, S. I. Sawada and A. Oshiyama, New one-dimensional conductors: graphitic microtubules, Phys. Rev. Lett. 68 (1992) 1579-1581. 98. R. Saito, M. Fujita, G. Dresselhaus and M. S. Dresselhaus, Electronic structure of chiral graphene tubules, Appl. Phys. Lett. 60 (1992) 2204-2206. 99. R. Saito, M. Fujita, G. Dresselhaus and M. S. Dresselhaus, Electronic structure of graphene tubules based on C60, Phys. Rev. B 46 (1992) 1804-1811. 100. J. W. G. Wilder, L. C. Venema, A. G. Rinzler, R. E. Smalley and C. Dekker, Electronic structure of atomically resolved carbon nanotubes, Nature 391 (1998) 59-62. 101. D. H. Oh and Y. H. Lee, Stability and cap formation mechanism of single-walled carbon nanotubes, Phys. Rev. B 58 (1998) 7407-7411. 102. T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi and T. Thio, Electrical conductivity of individual carbon nanotubes, Nature 382 (1996) 54-56. 103. D. L. Carroll, Ph. Redlich, X. Blase, J. C. Charlier, S. Curran, P. M. Ajayan, S. Roth, and M. Rühle, Effects of nanodomain formation on the electronic structure of doped carbon nanotubes, Phys. Rev. Lett. 81 (1998) 2332-2335. 104. R. S. Lee, H. J. Kim, J. E. Fischer, A. Thess and R. E. Smalley, Conductivity enhancement in single-walled carbon nanotube bundles doped with K and Br, Nature 388 (1997) 255-257. 105. A. Hirsch, Functionalization of single-walled carbon nanotubes, Angew. Chem. Int. Ed. 41 (2002) 1853-1859. 106. S. C. Tsang, Y. K. Chen, P. J. F. Harris and M. L. H. Green, A simple chemical method of opening and filling carbon nanotubes, Nature 372 (1994) 159-162. 107. R. M. Lago, S. C. Tsang, K. L. Lu, Y. K. Chen and M. L. H. Green, Filling carbon nanotubes with small palladium metal crystallites: the effect of surface acid groups, J. Chem. Soc., Chem. Commun. (1995) 1355-1356. 108. H. Hiura, T. W. Ebbesen and K. Tanigaki, Opening and purification of carbon nanotubes in high yields, Adv. Mater. 7 (1995) 275-276. 109. J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. K. Bradley, P. J. Boul, A. Lu, T. Iverson, K. Shelimov, C. B. Huffman, F. Rodriguez-Macias, Y. S. Shon, T. R. Lee, D. T. Colbert and R. E. Smalley, Fullerene pipes, Science 280 (1998) 1253-1256. 110. C. Zhao, Y. Peng, Y. Song, J. Ren and X. Qu, Self-assembly of single-stranded RNA on carbon nanotube: polyadenylic acid to form a duplex structure, Small 4 (2008) 656-661. 111. J. Chen, M. A. Hamon, H. Hu, Y. Chen, A. M. Rao, P. C. Eklund and R. C. Haddon, Solution properties of single-walled carbon nanotubes, Science 282 (1998) 95-98. 112. Y. Chen, J. Chen, H. Hu, M. A. Hamon, M. E. Itkis and R. C. Haddon, Solution- phase EPR studies of single-walled carbon nanotubes, Chem. Phys. Lett. 299 (1999) 532535. 113. E. T. Mickelson, C. B. Huffman, A. G. Rinzler, R. E. Smalley, R. H. Hauge and J. L. Margrave, Fluorination of single-wall carbon nanotubes, Chem. Phys. Lett. 296 (1998) 188-194. 114. E. T. Mickelson, I. W. Chiang, J. L. Zimmerman, P. J. Boul, J. Lozano, J. Liu, R. E. Smalley, R. H. Hauge and J. L. Margrave, Solvation of fluorinated single-wall carbon nanotubes in alcohol solvents, J. Phys. Chem. B 103 (1999) 4318-4322. 115. J. A. K. Howard, V. J. Hoy, D. O''Hagan and G. T. Smith, How good is fluorine as a hydrogen bond acceptor, Tetrahedron 52 (1996) 12613-12622. 116. Z. Gu, H. Peng, R. H. Hauge, R. E. Smalley and J. L. Margrave, Cutting single-wall carbon nanotubes through fluorination, Nano Lett. 2 (2002) 1009-1013. 117. A. Hirsch and O. Vostrowsky, Functionalization of carbon nanotubes, Top. Curr. Chem. 245 (2005) 193-237. 118. M. J. O''Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman and R. E. Smalley, Band gap fluorescence from individual single-walled carbon nanotubes, Science 297 (2002) 593-596. 119. V. C. Moore, M. S. Strano, E. H. Haroz, R. H. Hauge, R. E. Smalley, J. Schmidt and Y. Talmon, Individually suspended single-walled carbon nanotubes in various surfactants, Nano Lett. 3 (2003) 1379-1382. 120. S. A. Curran, P. M. Ajayan, W. J. Blau, D. L. Carroll, J. N. Coleman, A. B. Dalton, A. P. Davey, A. Drury, B. McCarthy, S. Maier and A. Strevens, A composite from poly(m-phenylenevinylene-co-2,5-dioctoxy-p-phenylenevinylene) and carbon nanotubes: a novel material for molecular optoelectronics, Adv. Mater. 10 (1998) 1091-1093. 121. M. J. O''Connell, P. Boul, L. M. Ericson, C. Huffman, Y. Wang, E. Haroz, C. Kuper, J. Tour, K. D. Ausman, R. E. Smalley, Reversible water-solubilization of single- walled carbon nanotubes by polymer wrapping, Chem. Phys. Lett. 342 (2001) 265-271. 122. M. Zheng, A. Jagota, E. D. Semke, B. A. Diner, R. S. Mclean, S. R. Lustig, R. E. Richardson and N. G. Tassi, DNA-assisted dispersion and separation of carbon nanotubes, Nature Mater. 2 (2003) 338-342. 123. R. J. Chen, Y. Zhang, D. Wang and H. Dai, Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization, J. Am. Chem. Soc. 123 (2001) 3838-3839. 124. V. Georgakilas, V. Tzitzios, D. Gournis and D. Petridis, Attachment of magnetic nanoparticles on carbon nanotubes and their soluble derivatives, Chem. Mater. 17 (2005) 1613-1617. 125. J. Zhu, M. Yudasaka, M. Zhang and S. Iijima, Dispersing carbon nanotubes in water: a noncovalent and nonorganic way, J. Phys. Chem. B 108 (2004) 11317-11320. 126. P. M. Ajayan, O. Stephan, C. Colliex and D. Trauth, Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite, Science 265 (1994) 1212-1214. 127. Y. Sun, S. R. Wilson and D. I. Schuster, High dissolution and strong light emission of carbon nanotubes in aromatic amine solvents, J. Am. Chem. Soc. 123 (2001) 5348-5349. 128. X. H. Li, B. Wu, J. E. Huang, J. Zhang, Z. F. Liu and H. L. Li, Fabrication and characterization of well-dispersed single-walled carbon nanotube/polyaniline composites, Carbon 41 (2003) 1670-1673. 129. M. Cochet, W. K. Maser, A. M. Benito, M. A. Callejas, M. T. Martínez, J. M. Benoit, J. Schreiber and O. Chauvet, Synthesis of a new polyaniline/nanotube composite: “in-situ” polymerisation and charge transfer through site-selective interaction, Chem. Commun. (2001) 1450-1451. 130. H. Zengin, W. Zhou, J. Jin, R. Czerw, D. W. Smith Jr., L. Echegoyen, D. L. Carroll, S. H. Foulger and J. Ballato, Carbon nanotube doped polyaniline, Adv. Mater. 14 (2002) 1480-1483. 131. T. M. Wu, Y. W. Lin and C. S. Liao, Preparation and characterization of polyaniline/multi-walled carbon nanotube composites, Carbon 43 (2005) 734-740. 132. T. M. Wu and Y. W. Lin, Doped polyaniline/multi-walled carbon nanotube composites: preparation, characterization and properties, Polymer 47 (2006) 3576-3582. 133. B. Valter, M. K. Ram and C. Nicolini, Synthesis of multiwalled carbon nanotubes and poly(o-anisidine) nanocomposite material: fabrication and characterization of its Langmuir-Schaefer films, Langmuir 18 (2002) 1535-1541. 134. L. Valentini, V. Bavastrello, E. Stura, I. Armentano, C. Nicolini and J. M. Kenny, Sensors for inorganic vapor detection based on carbon nanotubes and poly(o-anisidine) nanocomposite material, Chem. Phys. Lett. 383 (2004) 617-622. 135. B. Zhao, H. Hu and R. C. Haddon, Synthesis and properties of a water-soluble single-walled carbon nanotube-poly(m-aminobenzene sulfonic acid) graft copolymer, Adv. Funct. Mater. 14 (2004) 71-76. 136. B. Zhao, H. Hu, A. Yu, D. Perea and R. C. Haddon, Synthesis and characterization of water soluble single-walled carbon nanotube graft copolymers, J. Am. Chem. Soc. 127 (2005) 8197-8203. 137. E. Bekyarova, M. Davis, T. Burch, M. E. Itkis, B. Zhao, S. Sunshine and R. C. Haddon, Chemically functionalized single-walled carbon nanotubes as ammonia sensors, J. Phys. Chem. B 108 (2004) 19717-19720. 138. Y. Ma, S. R. Ali, L. Wang, P. L. Chiu, R. Mendelsohn and H. He, In situ fabrication of a water-soluble, self-doped polyaniline nanocomposite: the unique role of DNA functionalized single-walled carbon nanotubes, J. Am. Chem. Soc. 128 (2006) 12064-12065. 139. G. Wang, Y. Ding, F. Wang, X. Li and C. Li, Poly(aniline-2-sulfonic acid) modified multiwalled carbon nanotubes with good aqueous dispersibility, J. Colloid Interface Sci. 317 (2008) 199-205. 140. H. Zhang, H. X. Li and H. M. Cheng, Water-soluble multiwalled carbon nanotubes functionalized with sulfonated polyaniline, J. Phys. Chem. B 110 (2006) 9095-9099. 141. J. Xu, P. Yao, X. Li and F. He, Synthesis and characterization of water-soluble and conducting sulfonated polyaniline/para-phenylenediamine-functionalized multi- walled carbon nanotubes nano-composite, Mater. Sci. Eng. B 151 (2008) 210-219. 142. C. R. Martin, Membrane-based synthesis of nanomaterials, Chem. Mater. 8 (1996) 1739-1746. 143. P. X. Ma and R. Zhang, Synthetic nano-scale fibrous extracellular matrix, J. Biomed. Mater. Res. A 46 (1999) 60-72. 144. G. M. Whitesides and B. Grzybowski, Self-assembly at all scales, Science 295 (2002) 2418-2421. 145. A. Formhals, Process and apparatus for preparing artificial threads, US Patent 1,975,504. 1934. 146. D. H. Reneker and I. Chun, Nanometre diameter fibres of polymer, produced by electrospinning, Nanotechnology 7 (1996) 216-223. 147. J. Doshi and D. H. Reneker, Electrospinning process and applications of electrospun fibers, J. Electrostat. 35 (1995) 151-160. 148. B. Wang, Y. Wang, T. Yin and Q. Yu, Application of ekectrospinning technique in drug delivery, Chem. Eng. Comm. 197 (2010) 1315-1338. 149. D. Li and Y. Xia, Electrospinning of nanofibers: reinventing the wheel, Adv. Mater. 16 (2004) 1151-1170. 150. G. I. Taylor, Electrically driven jets, Proc. R. Soc. Lond. A 313 (1969) 453-475. 151. J. F. de la Mora, The fluid dynamics of Taylor cones, Annu. Rev. Fluid Mech. 39 (2007) 217-243. 152. P. D. Dalton, D. Klee and M. Möller, Electrospinning with dual collection rings, Polymer 46 (2005) 611-614. 153. N. Bhardwaj and S. C. Kundu, Electrospinning: a fascinating fiber fabrication technique, Biotech. Adv. 28 (2010) 325-347. 154. D. H. Reneker, A. L. Yarin, H. Fong and S. Koombhongse, Bending instability of electrically charge liquid jets of polymer solutions in electrospinning, J. Appl. Phys. 87 (2000) 4531-4557. 155. M. M. Hohman, M. Shin, G. Rutledge and M. P. Brenner, Electrospinning and electrically forced jets. I. stability theory, Phys. Fluids 13 (2001) 2201-2220. 156. M. M. Hohman, M. Shin, G. Rutledge and M. P. Brenner, Electrospinning and electrically forced jets. II. applications, Phys. Fluids 13 (2001) 2221-2236. 157. J. M. Deitzel, J. Kleinmeyer, D. Harris and N. C. B. Tan, The effect of processing variables on the morphology of electrospun nanofibers and textiles, Polymer 42 (2001) 261-272. 158. A. K. Haghi and M. Akbari, Trends in electrospinning of natural nanofibers, Phys. Status Solidi 204 (2007) 1830-1834. 159. J. S. Lee, K. H. Choi, H. D. Ghim, S. S. Kim, D. H. Chun, H. Y. Kim and W. S. Lyoo, Role of molecular weight of atactic poly(vinyl alcohol) (PVA) in the structure and properties of PVA nanofabric prepared by electrospinning, J. Appl. Polym. Sci. 93 (2004) 1638-1646. 160. A. Koski, K. Yim and S. Shivkumar, Effect of molecular weight on fibrous PVA produced by electrospinning, Mater. Lett. 58 (2004) 493-497. 161. H. Fong, I. Chun and D. H. Reneker, Beaded nanofibers formed during electro- spinning, Polymer 40 (1999) 4585-4592. 162. P. K. Baumgarten, Electrostatic spinning of acrylic microfibers, J. Colloid Interface Sci. 36 (1971) 71-79. 163. T. Lin, H. Wang, H. Wang and X. Wang, The charge effect of cationic surfactants on the elimination of fibre beads in the electrospinning of polystyrene, Nanotechnology 15 (2004) 1375-1381. 164. W. K. Son, J. H. Youk, T. S. Lee and W. H. Park, Effect of pH on electrospinning of poly(vinyl alcohol), Mater. Lett. 59 (2005) 1571-1575. 165. X. Zong, K. Kim, D. Fang, S. Ran, B. S. Hsiao and B. Chu, Structure and process relationship of electrospun bioabsorbable nanofiber membranes, Polymer 43 (2002) 4403-4412. 166. C. J. Buchko, L. C. Chen, Y. Shen and D. C. Martin, Processing and micro- structural characterization of porous biocompatible protein polymer thin films, Polymer 40 (1999) 7397-7407. 167. X. Y. Yuan, Y. Y. Zhang, C. H. Dong and J. Sheng, Morphology of ultrafine polysulfone fibers prepared by electrospinning, Polym. Int. 53 (2004) 1704-1710. 168. R. Jalili, S. A. Hosseini and M. Morshed, The effect of operating parameters on the morphology of electrospun polyacrilonitrile nanofibers, Iran. Polym. J. 14 (2005) 1074-1081. 169. C. Mit-uppatham, M. Nithitanakul and P. Supaphol, Ultrafine electrospun polyamide-6 fibers: effect of solution conditions on morphology and average fiber diameter, Macromol. Chem. Phys. 205 (2004) 2327-2338. 170. C. L. Casper, J. S. Stephens, N. G. Tassi, D. B. Chase and J. F. Rabolt, Controlling surface morphology of electrospun polystyrene fibers: effect of humidity and molecular weight in the electrospinning process, Macromolecules 37 (2004) 573-578. 171. A. G. MacDiarmid, “Synthetic Metals”: a novel role for organic polymers, Angew. Chem. Int. Ed. 40 (2001) 2581-2590. 172. J. R. Cárdenas, M. G. O. de França, E. A. de Vasconcelos, W. M. de Azevedo and E. F. da Silva Jr, Growth of sub-micron fibres of pure polyaniline using the electro- spinning technique, J. Phys. D: Appl. Phys. 40 (2007) 1068-1071. 173. Q. Z. Yu, M. M. Shi, M. Deng, M. Wang and H. Z. Chen, Morphology and conductivity of polyaniline sub-micron fibers prepared by electrospinning, Mater. Sci. Eng. B 150 (2008) 70-76. 174. D. Aussawasathien, J. H. Dong and L. Dai, Electrospun polymer nanofiber sensors, Synth. Met. 154 (2005) 37-40. 175. Y. Zhu, J. Zhang, Y. Zheng, Z. Huang, L. Feng and L. Jiang, Stable, superhydrophobic, and conductive polyaniline/polystyrene films for corrosive environments, Adv. Funct. Mater. 16 (2006) 568-574. 176. P. H. S. Picciani, E. S. Medeiros, Z. Pan, W. J. Orts, L. H. C. Mattoso and B. G. Soares, Development of conducting polyaniline/poly(latic acid) nanofibers by electrospinning, J. Appl. Polym. Sci. 112 (2009) 744-753. 177. I. D. Norris, M. M. Shaker, F. K. Ko and A. G. MacDiarmid, Electrostatic fabrication of ultrafine conducing fibers: polyaniline/polyethylene oxide blends, Synth. Met. 114 (2000) 109-114. 178. A. G. MacDiarmid, W. E. Jones, Jr., I. D. Norris, J. Gao, A. T. Johnson, Jr., N. J. Pinto, J. Hone, B. Han, F. K. Ko, H. Okuzaki and M. Llaguno, Electrostatically- generated nanofibers of electronic polymers, Synth. Met. 119 (2001) 27-30. 179. S. H. Lee, J. W. Yoon and M. H. Suh, Continuous nanofibers manufactured by electrospinning technique, Macromol. Res. 10 (2002) 282-285. 180. Y. Zhou, M. Freitag, J. Hone, C. Staii and A. T. Johnson, Jr., Fabrication and electrical characterization of polyaniline-based nanofibers with diameter below 30 nm, Appl. Phys. Lett. 83 (2003) 3800-3802. 181. I. S. Chronakis, S. Grapenson and A. Jakob, Conductive polypyrrole nanofibers via electrospinning: electrical and morphology properties, Polymer 47 (2006) 1597-1603. 182. R. Kessick and G. Tepper, Microscale polymeric helical structures produced by electrospinning, Appl. Phys. Lett. 84 (2004) 4807-4807. 183. J. J. Ge, H. Hou, Q. Li, M. J. Graham, A. Greiner, D. H. Reneker, F. W. Harris and S. Z. D. Cheng, Assembly of well-aligned multiwalled carbon nanotubes in confined polyacrylonitrile environments: electrospun composite nanofiber sheets, J. Am. Chem. Soc. 126 (2004) 15754-15761. 184. B. Sundaray, V. Subramanian and T. S. Natarajan, Electrical conductivity of a single electrospun fiber of poly(methyl methacrylate) and multiwalled carbon nanotube nanocomposite, Appl. Phys. Lett. 88 (2006) 143114. 185. Y. J. Kim, M. K. Shin, S. J. Kim, S. K. Kim, H. Lee, J. S. Park and S. I. Kim, Electrical properties of polyaniline and multi-walled carbon nanotube hybrid fibers, J. Nanosci. Nanotechnol. 7 (2007) 4185-4189. 186. M. K. Shin, Y. J. Kim, S. J. Kim, S. K. Kim, H. Lee, G. M. Spinks and S. J. Kim, Enhanced conductivity of aligned PANi/PEO/MWNT nanofibers by electrospinning, Sens. Actouators B 134 (2008) 122-126. 187. M. S. Kang, M. K. Shin, Y. A. Ismail, S. R. Shin, S. I. Kim, H. Kim, H. Lee and S. J. Kim, The fabrication of polyaniline/single-walled carbon nanotube fibers containing a highly-oriented filler, Nanotechnology 20 (2009) 085701. 188. B. Sundaray, A. Choi and Y. W. Park, Highly conducting electrospun polyaniline- polyethylene oxide nanofibrous membranes filled with single-walled carbon nanotubrs, Synth. Met. 160 (2010) 984-988. 189. I. D. Rosca, F. Watari, M. Uo and T. Akasaka, Oxidation of multiwalled carbon nanotubes by nitric acid, Carbon 43 (2005) 3124-3131. 190. Y. Ding, A. B. Padias and H. K. Hall Jr., Chemical trapping experiments support a cation-radical mechanism for the oxidative polymerization of aniline, J. Polym. Sci., A, Polym. Chem. 37 (1999) 2569-2579. 191. S. P. Armes and J. F. Miller, Optimum reaction conditions for the polymerization of aniline in aqueous solution by ammonium persulphate, Synth. Met. 22 (1988) 385-393. 192. J. Stejskal, A. Riede, D. Hlavatá, J. Prokeš, M. Helmstedt and P. Holler, The effect of polymerization temperature on molecular weight, crystallinity, and electrical conductivity of polyaniline, Synth. Met. 96 (1998) 55-61. 193. R. K. Saini, I. W. Chiang, H. Peng, R. E. Smalley, W. E. Billups, R. H. Hauge an
摘要: 本研究藉由溶液混合方式於水溶液環境下結合磺酸化聚苯胺與羧酸化多壁奈米碳管,並製備出具水溶特性之核殼管狀結構複合物。傅立葉轉換紅外光譜儀、拉曼光譜儀、紫外可見光譜儀、化學分析能譜儀、場發射掃瞄式電子顯微鏡和高解析度穿透式電子顯微鏡被使用來觀察磺酸化聚苯胺/羧酸化多壁奈米碳管複合物的形態與結構。其中,由拉曼、紫外可見光譜儀及化學分析能譜儀的分析結果中可得知磺酸化聚苯胺結構中的C–N+與羧酸化多壁奈米碳管的COO-間存在著靜電作用力。而羧酸化多壁奈米碳管的添加可補強磺酸化聚苯胺的熱穩定特性。當複合物中含有3 wt%羧酸化多壁奈米碳管時,其室溫下的導電度數值為磺酸化聚苯胺樣品的16倍之高,此導電數值的變化顯現出只要少量的羧酸化多壁奈米碳管,即可在複合物結構中構建良好的網狀導電通路,並藉此提升磺酸化聚苯胺/羧酸化多壁奈米碳管複合物的導電性質。另外,相似的溶液混合方式也應用於水溶性磺酸化聚吡咯/羧酸化多壁奈米碳管複合物之製備。 另一方面,磺酸化聚苯胺/羧酸化多壁奈米碳管複合物的電化學特性則以循環伏安法及電化學交流阻抗光譜法加以研究。研究結果顯示當羧酸化多壁奈米碳管存在於磺酸化聚苯胺基材中時,可增加磺酸化聚苯胺/羧酸化多壁奈米碳管複合薄膜的電化學活性,並增進氧化還原反應時的電子傳遞行為。再者,羧酸化多壁奈米碳管的存在同時也使得電化學反應的活性區域增加,並加快原本磺酸化聚苯胺上的電子傳遞。而藉由場發射掃瞄式電子顯微鏡和原子力顯微鏡所進行的表面形態分析結果,可證實複合薄膜表面分佈著分散良好的管狀結構,而相對粗糙的複合薄膜表面則提供了電極工作時所需要的反應面積。因此,表面形貌上的差異佐證了磺酸化聚苯胺/羧酸化多壁奈米碳管複合薄膜具有高電化學特性的原因。 研究中同時利用電紡絲技術成功地製備出磺酸化聚苯胺/聚氧化乙烯電紡絲纖維產物,其中欲獲得形態良好之電紡絲纖維的關鍵參數取決於電紡絲液體的黏度特性。研究結果顯示磺酸化聚苯胺的存在使得電紡絲液體所帶的電荷密度增加,因此可得到平均纖維直徑較小之電紡絲纖維產物。當磺酸化聚苯胺/聚氧化乙烯的重量比為0.33時,所得電紡絲纖維產物之導電度數值高於磺酸化聚苯胺/聚氧化乙烯重量比為0.2時之5倍以上。此外,電紡絲技術可輕易將羧酸化多壁奈米碳管複合至磺酸化聚苯胺/聚氧化乙烯電紡絲纖維中。高解析度穿透式電子顯微鏡影像證實羧酸化多壁奈米碳管確實存在於電紡絲纖維中,並平行排列於電紡絲纖維的軸向。而量測結果顯示電紡絲纖維的導電度數值隨著羧酸化多壁奈米碳管含量的增加而呈現上升的趨勢。
The water-soluble sulfonated polyaniline (SPANI)/carboxylic groups containing multi-walled carbon nanotube (c-MWCNT) composites with core-shell tubular structure have been prepared by solution mixing of c-MWCNT and SPANI aqueous colloids. Fourier-transform infrared spectroscopy, Raman spectroscopy, ultraviolet-visible (UV-Vis) absorption spectroscopy, X-ray photoelectron spectroscopy (XPS), field- emission scanning (SEM) and high-resolution transmission electron microscopy (HRTEM) were used to characterize their structure and morphology of composites. The results of Raman, UV-Vis and XPS spectra revealed the presence of electrostatic interaction between the C-N+ species of the SPANI and the COO- species of the c-MWCNTs. The addition of c-MWCNTs can improve the thermal stability of SPANI specimens. The conductivity of 3 wt% SPANI/c-MWCNT composites at room temperature is sixteen times higher than that of SPANI. The above results demonstrate that the addition of a small number of c-MWCNTs into SPANI matrix can efficiently form a conducting network in the well dispersed composites, thus increasing the electrical properties of the composites. In addition, similar methodology has been applied to fabricate the water-soluble sulfonated polypyrrole (SPPy)/c-MWCNT composites by aqueous mixing of c-MWCNT dispersions and SPPy colloids. The electrochemical performances of these SPANI/c-MWCNT composites have been investigated using cyclic voltammetry and electrochemical impedance spectro- scopy. The incorporation of the c-MWCNTs to SAPNI increases the electrochemical activity of SPANI/c-MWCNT composite films and promotes the electron transfer of the redox processes. Furthermore, the presence of c-MWCNTs also leads to more active sites for electrochemical reactions and a faster electron transfer than pure SAPNI. In addition, the morphology of SPANI/c-MWCNT composites measured by SEM and atomic force microscopy indicates the presence of well-distributed tubular structures that are individually coated with ED-SPANI on the surface of composite films. The relatively rough topography of composite films would provide a large surface area for electrolyte access. Therefore, it is expected that the difference in the structure of the composite films can result in high electrochemical properties of the electrodes constructed from these composite films. The electrospinning process has been successfully used to fabricate ultrafine fibers consisting of the mixture of SPANI and poly(ethylene oxide) (PEO). The key factor of fiber formation with uniform size of fibers were dependent on the solution viscosity. The SEM images showed that the average diameter of SPANI/PEO electrospun fibers were evidently decreased with increasing loading of SPANI content. This trendency may be attributed to the increase in the net charge density of the solution with the presence of SPANI, which favors the formation of thin fibers. The conductivity of SPANI/PEO electrospun fibers fabricated with the weight ratio of SPANI/PEO at 0.33 is about five times of magnitude higher than that of electrospun fibers with SPANI/PEO at 0.2. In addition, conducting composite fibers were also obtained through electro- spinning of SPANI/PEO solution containing different contents of c-MWCNTs. HRTEM images confirmed that the c-MWCNTs were encapsulated within the fibers as individual elements, mostly aligned along the fiber axis. The measured results showed that the electrical conductivity of the electrospun fiber mats improved with increasing the content of c-MWCNTs.
URI: http://hdl.handle.net/11455/10851
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.