Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10854
標題: 不同射頻功率對於以感應耦合電漿輔助熱化學氣相沉積法製備碳薄膜性質之影響
Effects of different radio-frequency powers on the properties of carbon films by thermal chemical vapor deposition with inductively coupled plasma
作者: 賴廸全
Lai, Ti-Chuan
關鍵字: Inductively coupled plasma
感應耦合電漿
Thermal chemical vapor deposition
carbon film
熱化學氣相沉積法
碳薄膜
出版社: 材料科學與工程學系所
引用: [1] R.S. Chu, “Fabrication and Characteristics of n-type and p-type Carbon Thin Films,” doctoral dissertation, Department of Materials Science and Engineering, National Chung Hsing University, Taiwan (R.O.C.) (2009). [2] A. K. Geim and K. S. Novoselov, Nature Materials, VOL 6 (2007) 183. [3] J.Robertson, Diamond-like amorphous carbon, Materials science and Engineering R37, 130 (2002) . [4] A.C. Ferrari and J. Robertson, Physical Review B, 61 (2000) 14095. [5] C. De Martino, F. Demichelis, and A. Tagliaferro, Diamond and Related Materials 4 (1995) 1211. [6] S. Zhang, X.T. Zeng, H. Xie, and P. Hing, Surface and Coatings Technology 123 (2000) 259. [7] 白木靖寬, 吉田貞史, 王建義編譯, 薄膜工程學, 全華科技圖書公司, (2009). [8] 羅吉宗, 薄膜科技與應用, 全華科技圖書公司, (2009). [9] C.A. Taylor and W.K.S. Chiu, Surface and Coatings Technology, 168 (2003) 1. [10] S.S. Chen, S.T. Shiue , Y.H. Wu, and K.J. Cheng, Surface & Coatings Technology, 202 (2007) 799. [11] K.J. Cheng, “Effects of the carbon coating thickness on the properties of hermetically carbon-coated optical fibers prepared by methane pyrolysis of thermal chemical vapor deposition”, Master thesis, Department of Materials Science and Engineering, National Chung Hsing University, Taichung City, Taiwan (R.O.C.) (2007). [12] S.S. Chen, S.T. Shiue , T.J. Yang, K.J. Cheng, P.Y. Chen, and H.Y. Lin, Journal of the Chinese Institute of Engineers, 32(2009)711. [13] P.Y. Chen , S.T. Shiue and, H.Y. Lin, Physica Status Solidi(a), 206(2009)1537. [14] P.Y. Chen, S.T. Shiue, and H.Y. Lin, Thin Solid Films, 518 (2010) 2884. [15] P.Y. Chen, “Effects of nitrogen/methane ratios and substrate sizes on the properties of carbon coatings on optical fibers prepared by thermal chemical vapor deposition” , Master thesis, Department of Materials Science and Engineering, National Chung Hsing University, Taichung City, Taiwan (R.O.C.) (2008). [16] M. Ohring,“Materials Science of Thin Films”,2nd Ed., Academic Press, San Diego (2002) . [17] B.D. Cullity and S.R. Stock, “Elements of X-ray Diffraction,” Third ed.,Prentice Hall, New Jersey (2001). [18] R.L. Mccreery, “Raman Spectroscopy for Chemical Analysis” , John Wiley&Sons, Canada (2000). [19] F. Tuinstra and J.L. Koenig, The Journal of Chemical Physical, 53 (1970) 1126. [20] P.C. Eklund, J.M. Holden, and R.A. Jishi, Carbon, 33 (1995) 959. [21] T. Young, Philos. Philosophical Transactions of the Royal Society Lond B, 9 (1805) 255. [22] H.M. Shang, Y. Wang, S.J. Limmer, T.P. Chou, K. Takahashi, and G. Z.Cao, Thin Solid Films, 472 (2005) 37. [23] Po-Yu Chen , Sham-Tsong Shiue, and Hung-Yi Lin, Thin Solid Films 518 (2010) 2884. [24] Instruction manual of the Four-point Probe (Model : QT-50) http://www.mems.louisville.edu/lutz/resources/sops/sop45.html [25] X. Bourrat, J. Lavenac, F. Langlais, and R. Naslain, Carbon, 39 (2001) 2376. [26] B.D. Cullity and S.R. Stock, “Elements of X-ray Diffraction,” Third ed.,Prentice Hall, New Jersey (2001). [27] J. Robertson, Diamond-like amorphous carbon, Materials science and Engineering R, 37, 130(2002). [28] L.G. Cancado, K. Takai, T. Enoki, M. Endo, Y. A. Kim, H. Mizusaki, A. Jorio, L. N. Coelho, R. Magalhães-paniago, and M. A. Pimenta, Applied Physics Letters, 88 (2006) 163106. [29] E. Tomasella, C. Meunier, and S. Mikhailov, Surface and Coatings Technology, 141 (2001) 286. [30] M. Lejeune, O. D. Drouhin, J. Henocque, R. Bouzerar, A. Zeinert, and M.Benlahsen, Thin Solid Films, 389 (2001) 233. [31] G.M. Bhalerao, A.K. Sinha, and V. Sathe, Physica E 41 (2008) 54. [32] M. Volmer and A. Weber, Zeitschrift für Physikalische Chemie, 119 (1926)277. [33] S. Adachi, T. Arai, and K. Kobayashi, Journal of Applied Physics, 80 (1996)5422. [34] M. Iwaki, Y. Suzuki, A. Nakao, and H. Watanabe, Nuclear Instruments And Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 127/128 (1997) 208. [35] H.M. Shang, Y. Wang, S.J. Limmer, T.P. Chou, K. Takahashi, and G. Z.Cao, Thin Solid Films, 472 (2005) 37. [36] T.H. Fang and W.J. Chang, Applied Surface Science, 220 (2003) 175. [37] J.H. Son, M. Y. Park, and S. W. Rhee, Thin Solid Films 335 (1998) 229. [38] L. Ostrovskyaya, V. Perevertailo, V. Ralchenko, A. Dementjev, and O.Loginova, Diamond and Related Materials, 11 (2002) 845. [39] E. Tomasella, C. Meunier, and S. Mikhailov, Surface and Coatings Technology, 141 (2001) 286.
摘要: 本論文主要是以感應耦合電漿輔助熱化學氣相沉積法(ICP-TCVD)製備碳薄膜,並探討不同電漿射頻功率對於碳薄膜性質之影響。本實驗利用場發式掃描電子顯微鏡(SEM)、X光繞射儀(XRD)、拉曼光譜儀(RSS)、原子力顯微鏡(AFM)、接觸角儀器(CA)及四點探針儀(FPP)來觀察並量測碳薄膜的膜厚、微觀結構、表面特性與電學性質。 研究結果發現隨著射頻功率增加,碳薄膜沉積速率上升。因受到石英玻璃基板XRD 峰值過於強烈影響,垂直面向微晶大小(Lc)的趨勢沒有規律,而平行面向微晶大小(La)隨著膜厚增加呈現下降趨勢。ID/IG值隨著射頻功率增加而提高,故碳薄膜結構呈現越來越無序狀態。表面粗糙度先呈現下降,在射頻功率250 W時達到最小值後又呈現上升趨勢。接觸角則是先呈現上升在射頻功率300 W時達到最大值後逐漸下降。電阻率則是先呈現下降,在射頻功率300 W時下降到最小值後呈現上升現象。
This study investigates the effects of different radio frequency (rf) powers on the properties of carbon films prepared by thermal chemical vapor deposition enhanced with inductively coupled plasma. The film thickness, microstructure, surface morphology, and electrical property of carbon films were investigated by field emission scanning electron microscopy, X-ray diffraction spectrometer, Raman scattering spectrometer, atomic force microscopy, contact angle meter, and four-points probe. The results indicate that the deposition rate increases as the rf power increases. Because the peak intensity of the substrate is much stronger than that of the graphite, the mean crystallite size(LC)has no trend with respect to the rf power. The in-plane crystallite size(La)decreases as the rf power increases. The ID/IG value increases as the rf-power increases, so the structure of carbon films becomes more disorder. The surface roughness of carbon films first decreases with increasing the rf power, but then increases as the rf power is over 250 W. The contact angle of carbon films increases with increasing the rf power in the beginning, but then decreases as the rf power is over 300 W. The electrical resistivity of the carbon films first decreases with increasing the rf power, but then increases as the rf power is over 300 W.
URI: http://hdl.handle.net/11455/10854
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.