Please use this identifier to cite or link to this item:
標題: 以磁控濺鍍法於低真空下製備Al及AlN薄膜之研究
Low-vacuum preparation of Al and AlN thin films by magnetron sputtering
作者: 姚力仁
Yao, Li-Ren
關鍵字: magnetron sputtering
出版社: 材料科學與工程學系所
引用: [1] Lide, David R, CRC handbook of chemistry and physics, Baker & Taylor Books, London, (2010). [2] K. Yashiro, M. Oho, Y. Tomita, “Ab initio study on the lattice instability of silicon and aluminum under [0 0 1] tension,” Comput. Mater. Sci., 29, (2004), 397-406. [3] F. M. Reicha, M. A. Elhiti, P. B. Barna, “Electrical properties of thin oxidized aluminum films,” J. Mater. Sci., 26, (1991), 2007-2014. [4] 李正中,薄膜光學與鍍膜技術,藝軒圖書出版社,2009年。 [5] J. H. Edgar and W. J. Meng, ”Properties of group III nitrides,” 1993 [6] P. K. Kuo, G. W. Auner, Z. L. Wu, “Microstructure and thermal conductivity of epitaxial AlN thin films,” Thin Solid Films, 253, (1994), 223-227. [7] E. Ruiz, S. Alvarez, P. Alemany, “Electronic structure and properties of AlN,” Phys. Rev. B: Condens. Matter, 49, (1994), 7115-7123. [8] B. Wang, Y. N. Zhao, Z. He, “The effects of deposition parameters on the crystallographic orientation of AlN films prepared by RF reactive sputtering,” vacuum, 48(5), (1997), 427-429. [9] S. Gredelj, A. R. Gerson, S. Kumar, G. P. Cavallaro, “Inductively coupled plasma nitriding of aluminium,” Appl. Surf. Sci., 199, (2002), 183-194 [10] H. L. Wang, H. M. Lv, G. D. Chen, H. G. Ye, “Synthesis of hexagonal AlN microbelts at low temperature,” J. Alloys Compd., 477, (2009), 580-582. [11] J. H. Choi, J. Y. Lee, J. H. Kim, “Phase evolution in aluminum nitride thin films on Si(100) prepared by radio frequency magnetron sputtering,” Thin Solid Films, 384, (2001), 166-172. [12] U. Figueroa, O. Salas, ”Production of AlN films ion nitriding versus PVD coating,” Thin Solid Films, 469-470 (2004), 295. [13] I. S. Materialov, N. Ukrainy, “Thermal conductivity and microwave dielectric properties of AlN-based ceramics containing conductive particles,” Sverkhtverdye Materialy, 3 (2004), 12. [14] P. Yang, S. Jian, S. Wud, Y. Lai, C. Wang, R. Chen, “Structural and mechanical characteristics of (103) AlN thin films prepared by radio frequency magnetron sputtering,” Appl. Surf. Sci., 255 (2009), 5984. [15] T. B. Massalski, H. Okamoto, P. R. Subramanian, L.K. Kacprzak, Binary Alloy Phase, Materials Park, Ohio, (1990). [16] 楊浚揮,以物理氣相沉積法通入空氣/氬氣製備TiN薄膜,國立中興大學材料工程學研究所碩士論文,2007年。 [17] 吳伯倫,在物理氣相沉積法中以空氣做為反應性氣體製備ZrN薄膜,國立中興大學材料工程學研究所碩士論文,2008年。 [18] W. R. Grove , ”On the Electro-Chemical Polarity of Gases,” Phil. Trans. R. Soc. Lond. 142, (1852), 87-101. [19] 汪建民,材料分析,中國材料科學會,1998年。 [20] M. Ohring, The material science of thin films, Chapter 9, Academic Press, San Diego, (1992). [21] B. Window, N. Savvides, ‘‘Charged particle fluxes from plamar magnetron sputtering source,’’ J. Vac. Sci. Technol. A, 11 (1993) 1522. [22] D. L. Rode, V. R. Gaddam, J. Y. Haeng, “Subnanometer surface roughness of d.c. magnetron sputtered Al films,” 102, (2007), 1-8. [23] M. Inoue, K. Hashizume, H. Tsuchikawa, ”The properties of aluminum thin films sputter deposited at elevated temperatures,” J. Vac. Sci. Technol. A, 6 (3), (1988), 1636-1639. [24] A. N. Campbell, R. E. Mikawa, D. B. Knorr, “Relationship Between Texture and Sputtered A1-1% Si Thin Films,” J. Electron. Mater., 22, (1993), 589-596. [25] H. Du, J. Gong, C. Sun, S. W. Lee, L. S. Wen, “Carrier density and DC conductivity of ultrathin aluminum films,” J. Mater. Sci., 39, (2004), 2865-2867. [26] D. S. Gianola, S. V. Petegem, M. Legros, S. Brandstetter, H. V. Swygenhoven, K. J. Hemker, ”Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films,” Acta Mater., 54, (2006), 2253-2263. [27] D. Buc, I. Hotovy, S. Hascik, I. Cerven, “Reactive unbalanced magnetron sputtering of AIN thin films,” Vacuum, 50, (1998), 121-123. [28] V. Dimitrova, D. Manova, T. Paskova, T. Uzunov, N. Ivanov, D. Dechev, ”Aluminium nitride thin films deposited by DC reactive magnetron sputtering,” Vacuum, 51, (1998), 161-164. [29] M. B. Assouar, O. Elmazria, L. L. Brizoual, P. Alnot, ”Reactive DC magnetron sputtering of aluminum nitride films for surface acoustic wave devices,” 11, (2002), 413-417. [30] S. H. Lee, K. H. Yoon, D. S. Cheong, J. K. Lee, ”Relationship between residual stress and structural properties of AlN films deposited by r.f. reactive sputtering,” Thin Solid Films, 435, (2003), 193-198. [31] I. C. Oliveira, K. G. Grigorov, H. S. Maciel, M. Massi, C. Otani, ”High textured AlN thin films grown by RF magnetron sputtering; composition, structure, morphology and hardness,” Vacuum, 75, (2004), 331-338. [32] G. G. Stoney, “The transition of metallic films deposited by electrolysis,” Proc. R. Soc. Lond., Ser. A 82, (1909), 172. [33] B. D. Cullity and S. R. Stock. Elements of X-ray Diffraction, Third Edition. Prentice, New York, (2001). [34] D. S. Rickerby, A. M. Jones and B. A. Bellamy, “X-ray diffraction studies of physically vapor deposited coatings,” Surf. Coat. Technol., 37, (1989), 111. [35] N. Joshi, A. K. Debnath, D. K. Aswal, K. P. Muthe, M. S. Kumarb, S. K. Gupta, J. V. Yakhmi, ”Morphology and resistivity of Al thin films grown on Si (1 1 1) by molecular beam epitaxy,” Vacuum, 79, (2005), 178-185. [36] H. E. Cheng, T. C. Lin, W. C. Chen, “Preparation of [002] oriented AlN thin films by mid frequency reactive sputtering technique,” Thin Solid Films, 425, (2003), 85-89. [37] H. Qiu, F. Wang, P. Wu, L. Pan, L. Li, L. Xiong, Y. Tian, “Effect of deposition rate on structural and electrical properties of Al films deposited on glass by electron beam evaporation,” Thin Solid Films, 414, (2002), 150-153. [38] G. A. Walker, C. C. Goldsmith, “Solid solution effect in aluminum films,” Vacuum, 7, (1970), 569-573. [39] A. Mahmood, N. Rakov, M. Xiao, “Influence of deposition conditions on optical properties of aluminum nitride (AlN) thin films prepared by DC-reactive magnetron sputtering,” Mater. Lett., 57, (2003), 1925-1933. [40] D. Manova, V. Dimitrova, W. Fukarek, D. Karpuzov, “Investigation of d.c.-reactive magnetron-sputtered AlN thin films by electron microprobe analysis, X-ray photoelectron spectroscopy and polarised infra-red reflection,” Surf. Coat. Technol., 106, (1998), 205-208. [41] J. Acosta, A. Rojo, O. Salas, J. Oseguer, “Process monitoring during AlN deposition by reactive magnetron sputtering,” Surf. Coat. Technol., 201, (2007), 7992-7999. [42] L. Jinlong, M. Shoudong, S. Kefei, L. Xiaomin, S. Zhenlun, ”AlN/Al dual protective coatings on NdFeB by DC magnetron sputtering,” J. Magn. Magn. Mater., 321, (2009), 3799-3803. [43] F. Malengreau, V. Hautier, M. Vermeersch, R. Sporken, R. Caudano, “Chemical interactions at the interface between aluminium nitride and iron oxide determined by XPS,” Surf. Sci., 330, (1995), 75-85. [44] E. Valcheva, S. Dimitrov, D. Manova, S. Mandl, S. Alexandrov, ”AlN nanoclusters formation by plasma ion immersion implantation,” Surf. Coat. Technol., 202, (2008), 2319-2322. [45] D. Manova, V. Dimitrova, D. Karpuzov, R. Yankov, “Reactively DC magnetron sputtered thin AlN films studied by X-ray photoelectron spectroscopy and polarised infrared reflection,” Vacuum, 52, (1999), 301-305. [46] P. Verardi, M. Dinescu, C. Gerardi, L. Mirenghi, V. Sandu, “AlN thin films deposition by laser ablation of Al target in nitrogen reactive atmosphere,” Appl. Surf. Sci., 109, (1997), 371-375. [47] N. Laidani, L. Vanzetti, M. Anderle, A. Basillais, C. B. Leborgne, J. Perriere, “Chemical structure of films grown by AlN laser ablation: an X-ray photoelectron spectroscopy study,” Surf. Coat. Technol., 122, (1999), 242-246. [48] L. Xue-Feng, D. A. Grove, L. C. Wei, G. S. Strossman, G. L. Button, J. R. Kingsley, “Morphological evolution and surface and interface structure of aluminum on polyimide,” J. Vac. Sci. Technol. B, 20, (2002), 766-775. [49] T. P. Nguyen, K. Amgaad, M. Cailler, V. H. Tran, S. Lefrant, ”XPS analysis of thermal and plasma treated polyparaphenylene-vinylene thin films and their interface formed with aluminum layer,” Synth. Met., 69, (1995), 495-496. [50] C. D. Wagner, D. E. Passoja, H. F. Hillery, T. G. Kinisky, H. A. Six, W. T. Jansen, J. A. Taylor, “Auger and photoelectron line energy relationship in aluminum-oxygen and silicon-oxygen compounds,” J. Vac. Sci. Technol., 21(4), (1982), 933-944. [51] T. L. Quoc, J. J. Pireaux, R. Caudano, P. Leclere, R. Lazzaroni, “XPS-AFM study of the PET surface modified by oxygen and carbon dioxide plasmas Al PET adhesion,” J. Adhes. Sci. Technol., 12, (1998), 999-1023. [52] J. Huang, L. Wang, Q. Shen, C. Lin, M. Ostling, “Preparation of AlN thin films by nitridation of Al-coated Si substrate,” Thin Solid films, 340, (1999), 137-139. [53] M. Curry, X. Li, Zhang J., M. L. Weaver, S. C. Street, ”Morphological and structural characterizations of dendrimer-mediated metallic Ti and Al thin film nanocomposites,” Thin Solid Films, 515, (2007), 3567-3573. [54] N. Joshi, A. K. Debnath, D. K. Aswal, K. P. Muthe, M. S. Kumar, S. K. Gupta, J. V. Yakhmi, “Morphology and resistivity of Al thin films grown on Si (1 1 1) by molecular beam epitaxy,” Vacuum, 79, (2005), 178-185. [55] P. Mishra, D. Ghose ”The hardness study of oxygen implanted aluminum thin films,” Surf. Coat. Technol., 201, (2006), 965-970. [56] C. Y. Lin, F. H. Lu, ”Oxidation behavior of AlN films at high temperature under controlled atmosphere,” J. Eur. Ceram. Soc., 28, (2008), 691-698. [57] 林志遠,氮化鋁在高溫控制氣氛下氧化行為之研究,國立中興大學材料工程學研究所碩士論文,2006年。 [58] J. Schulte, G. Sobe, “Magnetron sputtering of aluminum using oxygen or nitrogen as reactive gas,” Thin Solid Films, 324, (1998), 19-24. [59] B. Subramanian, K. Ashok, M. Jayachandran, “Structure, mechanical and corrosion properties of DCreactive magnetron sputtered aluminum nitride (AlN) hard coatings on mild steel substrates,” J. Appl. Electrochem., 38, (2008), 619-625. [60] S. R. Jian, G. J. Chen, S. C. Jang, Y. S. Lai, ”Nanomechanical properties of AlN(103) thin films by nanoindentation,” J. Alloys Compd., 494, (2010), 219-222. [61] H. Takikawa, K. Kimura, R. Miyano, T. Sakakibara, A. Bendavid, P. J. Martin, A. Matsumuro, K. Tsutsumi, “Effect of substrate bias on AlN thin film preparation in shielded reactive vacuum arc deposition,” Thin Solid Films, 386, (2001), 276-280. [62] G. Este, W. D. Westwood, ” Stress control in reactively sputtered AIN and TiN films,” J. Vac. Sci. Technol. A, 5 (4), (1987), 1892-1897. [63] V. Brien, P. Pigeat, “Correlation between the oxygen content and the morphology of AlN films grown by r.f. magnetron sputtering,” J. Cryst. Growth, 310, (2008), 3890-3895. [64] H. Y. Chen, S. Han, C. H. Cheng, H. C. Shih, “Effect of argon ion beam voltages on the microstructure of aluminum nitride films prepared at room temperature by a dual ion beam sputtering system,” Appl. Surf. Sci., 228, (2004), 128-134. [65] A. Zoroddu, F. Bernardini, P. Ruggerone, V. Fiorentini,“First-principles prediction of structure, energetics, formation enthalpy, elastic constants, polarization, and piezoelectric constants of AlN, GaN, and InN: Comparison of local and gradient-corrected density-functional theory,” Phys. Rev. B: Condens. Matter, 64, (2001), 045208-1~045208-6. [66] Natl. Bur. Stand. U.S. Monogr. 25, (1975), 12, 5. [67] N. D. Corbin, ”Aluminum Oxynitride Spinel:A Review,” J. Eur. Ceram. Soc., 5, (1989), 143-154. [68] J. W. McCauley, P. Patel, M. Chen, G. Gilde, E. Strassburger, B. Paliwal, K. T. Ramesh, D. P. Dandekar.”AlON:A brief history of its emergence and evolution,” J. Eur. Ceram. Soc., 29, (2009), 223-236. [69] J. J. Araiza, M. A. Frutis, C. Falcony, M. A. Jerge, “Optical, structural and electrical characteristics of aluminum oxynitride thin films deposited in an Ar-N gas mixture RF-sputtering system,” J. Mater. Sci. Mater. Electron., 16, (2005), 657-661. [70] K. R. Bray, R. L. C. Wu, S. F. Carr, J. Weimer, “Aluminum oxynitride dielectrics for multilayer capacitors with higher energy density and wide temperature properties,” Thin Solid Films, 518, (2009), 366-371. [71] W. Xiao1, X. Jiang, ”Optical and mechanical properties of nanocrystalline aluminum oxynitride films prepared by electron cyclotron resonance plasma enhanced chemical vapor deposition,” J. Cryst. Growth, 264, (2004), 165-171.
摘要: 過去文獻中利用磁控濺鍍法製備Al與AlN薄膜,皆以高純度Al靶進行鍍著,並將腔體內的真空度抽至高真空,以減少殘留氣體的影響,才進行鍍膜,由於在腔體抽氣至高真空,必須耗費較長的時間及較多的成本,如何節省成本以提高自我競爭力,已變成重要的議題。本研究利用磁控濺鍍法,縮短抽真空的時間,並於低真空下 (1.3×10-2 Pa,抽氣時間約三分鐘),通入氬氣製備Al薄膜及通入氮氣/氬氣之混合氣體製備AlN薄膜,成功製備出性質與高真空(6.6×10-4 Pa,抽氣時間至少要30分鐘)下所製備性質相近的薄膜,不僅可以達到節省抽氣至高真空所耗的能源,此外可大幅減少抽氣時間以達到節能減碳的目的。 在背景壓力為低真空下製備Al薄膜,本研究控制純氬氣流量為15 sccm、鍍著功率200 W、鍍著時間10分鐘、基板偏壓-50 V,工作壓力0.16 Pa下鍍著之薄膜,在背景壓力為低真空下製備AlN薄膜,控制氮氣/氬氣流量比為(26~40)/100、鍍著功率300 W、鍍著時間20分鐘、工作壓力0.253~0.263 Pa下鍍著之薄膜,並以高真空(6.6×10-4 Pa)為對照組,經由X光繞射儀(XRD)進行薄膜之結晶相分析,以場發射電子顯微鏡(FE-SEM)進行薄膜之橫截面分析,以穿透式電子顯微鏡(HR-TEM)觀察薄膜之顯微結構,以X光電子能譜儀(XPS)與電子微探儀(FE-EPMA)進行成分分析,以四點探針,以奈米硬度儀量測薄膜硬度及楊氏模數,以雷射曲率法量測薄膜中的殘留應力,綜合各項儀器分析結果歸納Al與AlN薄膜的特性,在低真空下,通入純氬氣所製備之Al薄膜,晶體結構為FCC結構,薄膜成分O的原子百分比約為6.2 at.%,且不含N的成分,硬度為3.2±0.5 GPa,電阻率為4±0.9 μΩ-cm,方均根粗糙度約為6.4±0.4 nm,而在低真空下,通入氮氣/氬氣流量比值為(26~40)/100下,所製備之AlN薄膜,晶體結構為六方晶系的纖鋅礦結構,薄膜中Al的原子百分比分別約為34~41.9 at.%、N的原子百分比分別約為54~58.1 at.%、O的原子百分比分別約為3.2~12 at.%,硬度約為(17±0.7)~(25±0.6) GPa,方均根粗糙度約為(0.6±0.4)~(1.1±0.8) nm,本研究發現在低真空下所製備之Al和AlN薄膜與高真空相比性質相近,由於本研究將背景壓力抽至低真空下製備,因此可縮減抽至高真空所需的時間,故利用本製程可省去抽真空所需之時間與成本,進而達到環保節能的目的。 本研究之結果顯示從熱力學分析中,在低真空下,Al會氧化成Al2O3,但本實驗在低真空下,通入氬氣成功製備出Al薄膜,以及通入氮氣與氬氣之混合氣體成功鍍著出AlN薄膜,此結果與熱力學的預測並不符合,因此電漿中通入Ar形成Al薄膜與通入氮氣形成AlN是動力學控制所造成之結果。
Appears in Collections:材料科學與工程學系



Show full item record
TAIR Related Article

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.