Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10872
標題: 氮化鎵磊晶模板之缺陷特性研究與發光二極體元件應用
Defect Characterization of GaN Epilayer Template for LED Applications
作者: 凃任鴻
Tu, Jen-Hung
關鍵字: Defect
缺陷
etching
light-emitting diode
patterned sapphire substrate
efficiency droop
InGaN
quantum efficiency
蝕刻
發光二極體
圖案化藍寶石
效率衰退
氮化銦鎵
量子效率
出版社: 材料科學與工程學系所
引用: [1] K. H. Kim, Z. Y. Fan, M. Khizar, M. L. Nakarmi, J. Y. Lin, and H.X. Jiang, “AlGaN-based ultraviolet light-emitting diodes grown on AlN epilayers,” Appl. Phys. Lett., vol, 85, p. 4777, 2004. [2] R. Braunstein, “Radiative transitions in semiconductors, “ Phys. Rev. vol. 99, p. 1892, 1955. [3] S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostrucuture blue-light-emitting diodes, “ Appl. Phys. Lett., vol. 64, p. 1687, 2004. [4] D. C. Look, and R. J. Molnar, “Degenerate layer at GaN/sapphire interface: Influence on Hall-effect measurements,“ Appl. Phys. Lett., vol . 70, p. 3377, 1997. [5] F. Huet, M. A. di, Forte-Poisson, A. Romann, M. Tordjman, J. D. Persio, and B. Pecz, “Modelling the defect structure in GaN MOCVD thin films by X-ray diffraction,” J. Cryst. Growth.,vol. 98, p. 209, 1989. [6] Q. Dai, M. F. Schubert, M. H. Kim, J. K. Kim, E. F. Schubert, D. D. Koleske, M. H. Crawford, S. R. Lee, A. J. Fischer, G. Thaler, and M. A. Banas, “Internal quantum efficiency and nonradiative recombination coefficient of GaInN/GaN multiple quantum wells with different dislocation densities,” Appl. Phys. Lett., vol. 94, p. 4777, 2004. [7] D. S. Wuu, W. K. Wang, W. C. Shih, R. H. Horng, C. E. Lee, W. Y. Lin, and J. S. Fang, “Enhanced output power of near-ultraviolet InGaN-GaN LEDs grown on patterned sapphire substrates.” IEEE Photon. Technol. Lett., vol. 14, p. 450, 2002. [8] H. P. Maraska, D. A. Stevenson, and J. I. Pankove, “Violet luminescence of Mg-doped GaN,” Appl. Phys. Lett. vol. 22, p.303, 1973. [9] S. Nakamura, M. Senoh and T. Mukai, “Highly p-typed Mg-doped GaN films grown with GaN buffer layers,” Jpn. J. Appl. Phy., vol. 30, p. 1708, 1991. [10] S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, “Thermal annealing effects on p-type Mg-doped GaN films,” Jpn. J. Appl. Phys. vol. 31, p.139, 1992. [11] T. Shibata, H. Sone, K. Yahashi, M. Yamaguchi, K. Hiramatsu, N. Sawaki, and N. Itoh, “Hydride vapor-phase epitaxy growth of high-quality GaN bulk single crystal by epitaxial lateral overgrowth,” J. Cryst. Growth, vol. 189, p.67, 1998. [12] P. Fini, L. Zhao, B. Moran, H. Marchand, J. P. Ibbetson, M. Hansen, S. P. DenBaars, U. K. Mishra, and J. S. Speck , “High-quality coalescence of laterally overgrown GaN stripes on GaN/sapphire seed layers,” Appl. Phys. Lett., vol. 75, p.1706, 1999. [13] D. Hanser, M. Tutor, E. Preble, M. Williams, X. Xu, D. Tsvetkov, and L. Liu, “Surface preparation of substrates from bulk GaN crystals.” J. Cryst. Growth., vol. 305, p. 372, 2007. [14] D. S. Wuu, W. K. Wang, K. S. Wen, S. C. Huang, S. H. Lin, S. Y. Huang, C. F. Lin, and R. H. Horng, “Defect reduction and efficiency improvement of near-ultraviolet emitters via laterally overgrown GaN on a GaN/patterned sapphire template,” Appl. Phys. Lett. vol. 89, p.161105, 2006. [15] P. Bhattacharya, Semiconductor optoelectric devices, Prentice Hall., New Jersey,1996 [16] K. N. Tu, J. W. Mayer, and L. C. Feldman, “I electronic thin film science: for electrical engineers and materials scientists, Pearson Education POD, p. 355, 1996. [17] B. Heying, X. H. Wu, S. Keller, Y. Li. D. kapolnek, B. P. Keller, S. P. Debaars, and J. S. Speck, “Role of threading dislocation structure on the x-ray diffraction peak widths in epitaxial GaN films,” Appl. Phys. Lett., vol. 68, p. 643, 1996. [18] S. Nakamura, “InGaN/Gan/AlGaN-based laser diodes with an estimated lifetime of longer than 10,000 hours,” MRS Bulletin, vol. 23, p. 37, 1998. [19] K. N. Tu, J. W. Mayer, and L. C. Feldman, Electronic thin film science for electrical engineers and materials scientist, Macmillan, New York, 1996. [20] W. T. Read, Jr., Dislocations in crystal, Mcgraw-Hill Book, New York, 1953. [21] X. H. Wu, C. R. Elsass, A. Abare, M. Mack, S. Keller, P. M. Petroff, S. P. DenBaars, and J. S. Speck, “Structural origin of V-defects and correlation with localized excitonic centers in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett., vol. 72, p. 692, 1998. [22] S. Keller, G. Parish, J. S. Speck, S. P. DenBaars, and U. K. Mishra, “Dislocation reduction in GaN films through selective island growth of InGaN,” Appl. Phys. Lett., vol. 77, p. 2665, 2000. [23] N. G. Weimann, L. F. Eastman, D. Doppalapudi, H. M. Ng, and T. D. Moustakes, “Scattering of electrons at threading dislocations in GaN,” J. Appl. Phys., vol. 83, p. 3656, 1998. [24] S. K. Mathis, A. E. Romanov, L. F. Chen, G. E. Beltz, W. Pompe, and J. S. Speck, “Modeling of threading dislocation reduction in growing GaN layers,” Phys. Stat. Sol. (a), vol. 179, p.125, 2000. [25] H. K. Cho, J. Y. Lee, G. M. Yang, and C. S. Kim, “Formation mechanism of V defects in the InGaN/GaN multiple quantum wells grown on GaN layers with low threading dislocation density,” Appl. Phys. Lett., vol. 79, p. 215, 2001. [26] J. E. Ayers, “The measurement of threading dislocation densities in semiconductor crystals by X-ray diffraction,” J. Cryst. Growth, vol. 135, p.71 ,1994. [27] T. Metzger, R. Hopler, E. Born, O. Ambacher, M. Stutzmann, R. Stommer, M. Schuster, H. Gobel, S. Christiansen, M. Albrecht, and H. P . Strunk, “ Defect structure of epitaxial GaN films determined by transmission electron microscopy and triple-axis X-ray diffractometry,” Philos. Mag. A, vol. 77, p.1013, 1998. [28] B. Heying, X. H. Wu, S. Keller, Y. Li,c) D. Kapolnek, B. P. Keller, S. P. DenBaars, and J. S. Speck, “Role of threading dislocation structure on the x-ray diffraction peak widths in epitaxial GaN films,” Appl. Phys. Lett., vol. 68, p. 643, 1996. [29] J. Chaudhuri, M. H. Ng, D. D. Koleske, A. E. Wickenden, abd R. L. Henry, “High resilution X-ray diffraction and X-ray topography study of GaN on sapphire,” Mater. Sci. Eng., vol. B64, p. 99, 1999. [30] M. J. Hordon, and B. L. Averbach, “X-ray measurements of dislocation density in deformed copper and aluminum single crystals,” Acta. Metallurgica, vol. 9, p. 237, 1961. [31] B. Heying, X. H. Wu, S. Keller, Y. Li, D. Kapolnek, B. P. Keller, S. P. DenBaars, and J. S. Speck, “Role of threading dislocation structure on the x-ray diffraction peak widths in epitaxial GaN films,” Appl. Phys. Lett., vol. 68, p. 643, 1996. [32] H. Heinke, V. Kirchner, S. Einfeldt, and D. Hommel, “Anzlysis of the defect structure of epitaxial GaN,” Phys. Stat. Sol. (a), vol. 176, p. 391, 1999. [33] R. Chierchia, T. BWttcher, H. Heinke, S. Einfeldt, S. Figge, and D. Hommel, “Microstructure of heteroepitaxial GaN revealed by x-ray diffraction,” J. Appl. Phys., vol. 93, p. 8918, 2003. [34] K. D. Beyer, “Chem-mech polishing method for producing coplanar metal/insulator films on a substrate,” U. S. Patent. 4944836, 1990. [35] F. B. Kaufman, D.B. Thompson, R. E. J. Broadie, M. A. Jaso, W. L. Guthrie, D. J. Pearson and M. B. Small, “Chemical-mechanical polishing for fabricating patterned W metal features as chip interconnects,” J. Electrochem. Soc. vol. 138, p.3460, 1991. [36] J. M. Steigerwald, S. P. Murarka, and R. J. Gutmann, “Chemical mechanical planarization of microelectronic meterials,” John Wiley and Sons, Inc. p. 37, 1997. [37] N. J. Brown, P. C. Baker, and R. T. Maney, “Optical polishing of metals,” Proc. SPIE., vol. 306, p.42, 1981. [38] L. M. Cook, “Chemical processes in glass polishing,” J. Non-cryst. Solids. vol. 120, p.152, 1990. [39] M. Tomozawa and R. Doremus, Zumitani: in treatise on materials science and technology, Academic Press, New York, p. 115, 1979. [40] F. G. Shi, and B. Zhao, “Modeling of chemical-mechanical polishing with soft pads,” Appl. Phys. A., vol. 67, p. 249, 1998. [41] W. T. Tseng, and Y. T. Wang, “Re-examination of pressure and speed dependences of removal rate during chemical-mechanical polishing processes,” J. Electrochem. Soc., vol. 144, p .15, 1997. [42] I. V. Rozhansky, and D. A. Zakheim, “Analysis of dependence of electroluminescence efficiency of AlInGaN LED heterostructures on pumping,” Phys. Status Solidi C, vol. 3, p. 2160, 2006. [43] I. V. Rozhansky, and D. A. Zakheim, “Analysis of processes limiting quantum efficiency of AlGaInN LEDs at high pumping,” Phys. Status Solidi A , vol. 204, p. 227, 2007. [44] M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, “Origin of efficiency droop in GaN-based light-emitting diodes,” Appl. Phys. Lett., vol. 91, p. 183507, 2007. [45] Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, “Auger recombination in InGaN measured by photoluminescence,” Appl. Phys. Lett., vol. 91, p. 141101, 2007. [46] A. A. Efremov, N. I. Bochkareva, R. I. Gorbunov, D. A. Larinovich, Yu. T. Rebane, D. V. Tarkhin, and Yu. G. Shreter, “Effect of the joule heating on the quantum efficiency and choice of thermal conditions for high-power blue InGaN/GaN LEDs,” Semiconductors, vol. 40, p. 605, 2006. [47] K. Akita, T. Kyono, Y. Yoshizumi, H. Kitabayashi, and K. Katayama, “Improvements of external quantum efficiency of InGaN-based blue light-emitting diodes at high current density using GaN substrates,” J. Appl. Phys., vol. 101, p. 033104, 2007. [48] T. Paskova, R. Kroeger, S. Figge, D. Hommel, V. Darakchieva, B.Monemar, E. Preble, A. Hanser, N. M. Williams, and M. Tutor,“High-quality bulk a-plane GaN sliced from boules in comparison to heteroepitaxially grown thick films on r-plane sapphire,” Appl. Phys. Lett., vol. 89, p. 051914, 2006. [49] A. Chakraborty, K. C. Kim, F. Wu, J. S. Speck, S. P. DenBaars, and U. K. Mishra, “Defect reduction in nonpolar a-plane GaN films using in situ SiNx nanomask,” Appl. Phys. Lett., vol. 89, p. 041903, 2006. [50] V. Fiorentini, F. Bernardini, and O. Ambacher, “Evidence for nonlinear macroscopic polarization in III-V nitride alloy heterostructures,” Appl. Phys. Lett., vol. 80, p. 1204, 2002. [51] SiLENSe by STR Group, Ltd. St. peterburg, Russia. [52] A.E. Romanov, T.J. Baker, S. Nakamura, and J.S. Speck, “Strain-induced polarization in wurtzite III-nitride semipolar layers,” J. Appl. Phys., vol. 100, p. 023522, 2006. [53] J.F.Nye, “Physical properties of crystals. The representation by tensors and martices,” Oxford at the Clarendon Press, 1964. [54] S. H. Wei and A. Zunger, “Valence band splittings and band offsets of AlN, GaN, and InN,” Appl. Phys. Lett., vol. 69, p. 2719, 1996. [55] Y. K. Kuo, B. T. Liou, M. L. Chen, S. H. Yen, and C. Y. Lin, “Effect of band-offset ratio on analysis of violet-blue InGaN laser characteristics,” Opt. Commun., vol. 231, p. 395, 2004. [56] S. H. Han, D. Y. Lee, S. J. Lee, C. Y. Cho, M. K. Kwon, S. P. Lee, D. Y. Noh, D. J. Kim, Y. C. Kim, and S. J. Park, “Effect of electron blocking layer on efficiency droop in InGaN/GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett., vol. 94, p. 231123, 2009. [57] H. Masui, T. Ive, M. C. Schmidt, N. N. Fellows, H. Sato, H. Asamizu, S. Nakamura, and S. P. DenBaars, “Equivalent-circuit analysis for the electroluminescence-efficiency problem of InGaN/GaN light-emitting diodes,” Jpn. J. Appl. Phys. vol. 47, p. 2112, 2008. [58] Y. K. Su, J. J. Chen, C. L. Lin, S. M. Chen, W. L. Li, and C. C. Kao, “Pattern-size dependence of characteristics of nitride-based LEDs grown on patterned sapphire substrates,” J. Cryst. Growth, vol. 311, p. 2973, 2009. [59] I. Han, R. Datta, S. Mahajan, R. Bertram, E. Lindow, C. Werkhoven and C. Arena, “Characterization of threading dislocations in GaN using low-temperature aqueous KOH etching and atomic force microscopy,” Scripta Materialia, vol. 59, p. 1171, 2008. [60] D. Cherns, S. J. Henley, and F. A. Ponce, “Edge and screw dislocations as nonradiative centers in InGaN/GaN quantum well luminescence,” Appl. Phys. Lett., vol. 78, p. 2691, 2001. [61] J. C. Zhang,a_ D. S. Jiang, Q. Sun, J. F. Wang, Y. T. Wang, J. P. Liu, J. Chen, R. Q. Jin, J. J. Zhu, H. Yang, T. DaiQ, and J. Jia, “Influence of dislocations on photoluminescence of InGaN/GaN multiple quantum wells,” Appl. Phys. Lett., vol. 87, p. 071908, 2005. [62] S. K. Mathis, A. E. Romanov, L.F. Chen, G. E. Beltz, W. Pompe, and J. S. Speck, “Modeling of threading dislocation reduction in growing GaN layers,” J. Cryst. Growth, vol. 231, p. 371, 2001. [63] T. Paskova, E. Valcheva, and P. P. Paskov, “HVPE-GaN: Comparison of emission properties and microstructure of films grown on different laterally overgrown templates,” Diamond Relat. Mater., vol. 13, p. 1125, 2004. [64] U. Kaufmann, M. Kunzer, and H. Obloh, “Origin of defect-related photoluminescence bands in doped and nominally undoped GaN,” Phys. Rev. B., vol. 59, p. 5561, 1999. [65] J. Neugebauer, G. Chris and V. D. Wale,“Gallium vacancies and the yellow luminescence in GaN,” Appl. Phys. Lett., vol. 69, p. 503, 1996. [66] M. Yoshimoto, J. Saraie, and S. Nakamura, “Low-temperature microscopic photoluminescence images of epitaxially laterally overgrown GaN,” Jpn. J. Appl. Phys., vol. 40, p. 386, 2001. [67] X. Li, and P. W. Bohn, “Impurity states are the origin of yellow-band emission in GaN structures produced by epitaxial lateral overgrowth,” Appl. Phys. Lett., vol. 75, p. 4049, 1999. [68] J. Hang, Y. Shen, and Z. Wang, “Effects of residual C and O impurities on photoluminescence in undoped GaN epilayers,” Mater. Sci. Eng. B., vol. 91, p. 303, 2002. [69] H. C. Yang, T. Y. Chen, and Y. F. Chen,“Nature of the 2.8-eV photoluminescence band in Si-doped GaN,”Phys. Rev. B., vol. 62, p. 12593, 2000. [70] P. Gibart, B. Beaumont, and S. J. Chua, “Spatially resolved photoluminescence of laterally overgrown GaN,”J. Cryst. Growth, vol. 201, p. 365, 1999. [71] Y. H. Cho, H. M. Kim, T. W. Kang, J. J. Song, and W. Yang, “Spatially resolved cathodoluminescence of laterally overgrown GaN pyramids on (111) silicon substrate: Strong correlation between structural and optical properties,” Appl. Phys. Lett., vol. 80, p. 1141, 2002.
摘要: 在本論文中我們提出一個有效率降低貫穿式差排密度並且增加內部量子效率應用在氮化銦鎵近紫外光波段(~400 nm)發光二極體元件。氮化鎵選擇性蝕刻缺陷加上圖案化藍寶石基板技術的組合,在成長磊晶層時成為貫穿式差排的遮罩阻止差排成長延伸。這種選擇性蝕刻氮化鎵/圖案化藍寶石基板結構能夠有效將缺陷集中並且將缺陷密度下降約105 cm-2。而再成長的氮化鎵磊晶層使用X-ray雙晶繞射、冷陰極螢光量測、穿透式電子顯微鏡分析其結構特性。在350 mA電流注入下,使用選擇性蝕刻二氧化矽阻擋層/圖案化藍寶石基板結構的LED量測其光輸出功率比傳統使用藍寶石基板效率提高約46%,光輸出功率不只是因為降低缺陷密度,並且利用擇性蝕刻二氧化矽阻擋層/圖案化藍寶石基板結構增加其光取出效率。 另外,我們將使用模擬軟體SiLENS來模擬InGaN多量子井結構於不同缺陷密度下對LED的效率影響,並使用模組模擬在近紫外光波段的(~400 nm) InGaN/GaN發光二極體於不同缺陷密度成長在藍寶石基板上,並改變電流值得到光功率輸出,並且在細節討論元件能帶圖、載子分佈、輻射復合效率、光電特性曲線、和外部量子效率。然而,低缺陷密度元件隨著電流密度注入增加效率跟著下降,然而高缺陷密度的效率衰退反而較小。而模擬結果認為降低缺陷在高電流密度注入下增加光電特性主要還是因為增加直接輻射復合率所造成的。
In this thesis, we report an approach for efficiently improving the threading dislocation (TD) density and internal quantum efficiency of InGaN-based near-ultraviolet (~400 nm) light-emitting diodes (LEDs). A combination of selective etching of GaN defects and patterned sapphire substrate (PSS) techniques forms a growth mask of TDs in GaN epitaxial layers. This selective etched-GaN/PSS structure can efficiently achieve defect centralization and the defect density can be reduced to 105 cm-2. The structural properties of the regrown GaN epilayers were investigated in details using double-crystal X-ray diffraction, cathodeluminescence, and secondary ion mass spectroscopy. Under a 350-mA injection current, the output power of the SiO2-block/PSS LED is enhanced by 46% compared with that of the conventional GaN/sapphire one. The improvement of the output power is not only due to the decrease in dislocation density, but also to the enhancement of extraction efficiency using PSS. In addition, we investigate the characteristics of near-ultraviolet (~400 nm) InGaN multiple-quantum well based LED using a SiLENS simulation program. Simulations of light-output power versus current are performed for GaInN/GaN light-emitting diodes grown on GaN-on-sapphire templates with different threading dislocation densities. The energy band diagrams, carrier concentrations, radiative recombination efficiency, light-current curves, and external quantum efficiency are taken into account in detail. Low-defect-density devices exhibit a efficiency peak followed by droop as current increases. However, the high-defect-density devices show low peak efficiencies and little droop. The simulation results suggest that improvement of internal quantum efficiency is mainly due to the increase of radiative recombination at high current injection.
URI: http://hdl.handle.net/11455/10872
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.