Please use this identifier to cite or link to this item:
標題: 熱燈絲化學氣相沉積法製備碳化矽/單晶矽異質接面太陽電池
Fabrication and Characterization of SiC:H/c-SiHeterojunction Solar Cells Using Hot-wire CVD
作者: 楊鎮宇
Yang, Jhen-Yu
關鍵字: Si HJ
window layer
hot-wire CVD
H2 flow ratio
出版社: 材料科學與工程學系所
引用: [1] 《科學發展》2002年1月,349期,22~29頁。 [2] 台灣綜合研究院 [3] 三洋電機 [4] T. Tedje, E. Yablonovitch, G. D. Cody, "Limiting efficiency of silicon solar cells", IEEE Trans. Electron Devices, vol. 31, pp. 711-716 1984. [5] J. Zhao, A. Wang, P. Altermatt, M. A. Green, " Twenty-four percent efficient silicon solar cells with double layer antireflection coatings and reduced resistance loss", Appl. Phys. Lett., vol. 66, p. 3636-3639, 1995. [6] H. Matsumura, H. Umemoto and A. Masuda, "Cat-CVD (hot-wire CVD): how different from PECVD in preparing amorphous silicon", J. of Non-Crystalline Solids, vol. 338, pp. 19-26, Jun. 2004. [7] K. Ishibashi, M. Karasawa, G. Xu, N. Yokokawa, M. Ikemoto, A. Masuda and H. Matsumura, "Development of Cat-CVD apparatus for 1-m-size large-area deposition", Thin Solid Films, vol. 430, pp. 58-62, Apr. 2003. [8] 莊嘉琛, "太陽能工程-太陽電池篇", 全華科技圖書出版 (2003). [9] T. Markvart, "Solar Electricity", John Wiley& Sons, 2000. [10] D. A. Neamen, "Semiconductor Physics and Devices", The McGraw Hill Companies, 1992. [11] S. O. Kasap. "Optoelectronics and Photonics Principles and Particals", Pearson Prentice Hall Companies. 2001. [12] 羅吉宗, "薄膜科技與應用", 全華科技圖書出版. [13] 莊達人, "VLSI製造技術", 高立圖書出版. [14] 王陽元, T.I. 卡明斯, 趙寶瑛, "多晶矽薄膜及其在集成電路中的應用", 科學出版社. [15] B. Nelson, E. Iwaniczko, A. H. Mahan, Q. Wang, Y. Xu, R. S. Crandall and H. M. Branz, "High-Deposition Rate a-Si:H n-i-p Solar Cells Grown by HWCVD", Thin Solid Films, vol.395, pp. 292-297, Sep. 2001. [16] R.E.I. Schropp, M. Zeman, "Amorphous and Microcrystalline Silicon Solar Cell: Modeling, Materials and Device Technology", Kluwer Academic Publishers. [17] [18] U. Weber, M. Koob, R. O. Dusane, C. Mukherjee, H. Seitz und B. Schröder, "a-Si:H Based Solar Cells Entirely Deposited by Hot-Wire CVD", Proceedings of the 16th European Photovoltaic Solar Energy Conference, pp. 286-289, Oct. 2000. [19] K. Inoue, S. Tange, K. Tonokure, M. Koshi, "Catalytic Decomposition of SiH4 on a Hot Filament", Thin Solid Films, vol. 395, pp. 42-46, Sep. 2001. [20] M. Koshi, F. Tamura, H. Matsui, "Rate Constants for the Reactions of Hydrogen Atoms with SiHnF4 − n (n = 4, 3, 2)", Chem. Phys. Lett. vol.173, pp. 235-240, Oct. 1990. [21] H. Matsumura, "Study on Catalytic Chemical Vapor Deposition Method to Prepare Hydrogenated Amorphous Silicon", J. Appl. Phys., vol. 65, pp. 4396-4402, Jun. 1989. [22] A. Gallagher, "Some Physics and Chemistry of Hot-Wire Deposition", Thin Solid Films, vol. 395, pp. 25-28, Sep. 2001. [23] E. C. Molenbroek, "Deposition of Hydrogenated Amorphous Silicon with the Hot Wire Technique", Ph.D.-Thesis, University of Colorado, Apr. 1995. [24] A. H. Mahan, J. Carapella, B. P. Nelson and R. S. Crandall, "Deposition of device quality, low H content amorphous silicon", Journal of Applied Physics, vol. 69, pp. 6728-6730, May. 1991. [25] K. Inoue, S. Tange, K. Tonokure and M. Koshi, "Catalytic decomposition of SiH4 on a hot filament", Thin Solid Films, vol. 395, pp. 42-46, Sep. 2001. [26] A. Gallagher, "Some physics and chemistry of hot-wire deposition", Thin Solid Films, vol. 395, pp. 25-28 Sep. 2001. [27] K. Uchida, A. Izumi, H. Matsumura, “Novel chamber cleaning method using atomic hydrogen generated by hot catalyzer”, Thin Solid Films, vol. 395, pp. 75-77 Sep. 2001. [28] A. Masuda, Y. Ishibashi, K. Uchida, K. Kamesaki, A. Izumi, H. Matsumura, "In situ chamber cleaning using atomic H in catalytic-CVD apparatus for mass production of a-Si:H soalr cells", Solar Energy Materials and Solar Cells, vol. 74, pp. 373-377, Oct. 2002. [29] H. Umemoto, K. Ohara, D. Morita, "Direct detection of H atoms in the catalytic chemical vapor deposition of the SiH4/H2 system", Journal of Applied Physics, vol. 91, pp. 1650-1656, Feb. 2002. [30] A. Masuda, H. Matsumura, "Guiding principles for device-grade hydrogenated amorphous silicon films and design of catalytic chemical vapor deposition apparatus", Thin Solid Films, vol. 395, pp. 112-115, Sep. 2001. [31] A. Heya, A. Masuda, H. Matsumura, "Low-temperature crystallization of amorphous silicon using atomic hydrogen generated by catalytic reaction on heated tungsten", Applied Physics Letters, vol. 74, pp. 2143-2145, Apr. 1999. [32] W. Ruihua, L. Zhiqiang, L. Li and L. Jahe, "study of hot wire chemical vapor deposition technique for silicon thin film", Solar Energy Materials and Solar Cells, vol. 62, pp. 193-199 Apr. 2000. [33] T. Sawada et al., Conf. Record of the IEEE 1st World Conference on Photovoltaic Energy Conversion, Hawaii, USA, 1994, pp. 1219-1226. [34] M. Tucci, G. D. Cesare, J. Non-Cryst. Solids, vol. 338-340 (2004) pp. 663-667. [35] E. Centurioni, D. Iencinella, R. Rizzoli and F. Zignani, IEEE Transactions on Electron Devices, vol. 51 (2004) pp. 1818-1824. [36] H. M. Branz, C. W. Teplin, M. Page, E. Iwaniczko, L. Roybal, D. H. Levi, R. Bauer, Y. Xu, P. Stradins, T. Wang and Q. Wang, Conf. Record of the 4th International Conference on Hot-Wire CVD (Cat-CVD) process, Gifu, Japan, 2006, pp. 327-330. [37] C. Voz, D. Munoz, M. Fonrodona, I. Martin, J. Puigdollers, R. Alcubilla, J. Escarre, J. Bertomeu and J. Andreu, Thin Solid films, vol.511-512 (2006) pp. 415-419. [38] Q. Wang, M. R. Page, Y. Xu, E. Iwaniczko, E. Whnams, T. H. Wang, Thin Solid films, vol. 430 (2003) pp. 208-211. [39] Q. Zhang, M. Zhu, F. Liu and J. Li, Photovoltaic Science & Engineering Conversion, Shanghai, China, 2005, pp. 1170-1171. [40] M. Taguchi, K. Kawamoto, S. Tsuge, T. Baba, H. Sakata, M. Morizane, K. Uchihashi, N. Nakamura, S. Kiyama and O. Oota, Prog. Phototovolt. Res. Appl., vol. 8 (2000) pp. 503-513. [41] M. W. M. van Cleef, J. K. Rath, F. A. Rubinelli, C. H. M. van dert Werf, R. E. I. Schropp and W. F. van der Weg, J. Appl. Phys., vol. 82 (1997) pp. 6089-6095. [42] J. Pl, E. Centurioni, C. Summonte, R. Rizzoli, A. Migliori, A. Desalvo and F. Zignani, Thin Solid Films, vol. 405 (2002) pp. 248-255. [43] Y. Komura et al., "Film Properties of Nanocrystalline 3C-SiC Thin Films Deposited by Hot-Wire Chemical Vapor Deposition Using CH4 as a Carbon Source", J. Appl. Phys. 46 (2007) pp. 45-50. [44] Z. Iqbal, S. Veprek, A.P. Webb, P. Capezzuto, "Raman Scattering from Small Particle Size Polycrystalline Silicon", olid State Commum, vol. 37, pp. 993-996, Mar. 1981. [45] Bibhu P. Swain, "The analysis of carbon bonding environment in HWCVD deposited a-SiC:H films by XPS and Raman spectroscopy", Surface & Coatings Technology 201 (2006) pp. 1589-1593. [46] W.Y. Lee, J. Appl. Phys. 51 (1980) p. 3365. [47] W.K. Choi, F.L. Loo, F.C. Loh, K.L. Tan, J. Appl. Phys. 78 (1996) p. 7289. [48] I. Solomon, M.P. Schmidt, C. Senemand, M. DrissKhodja, Phys. Rev., B 38 (1988) p. 13263. [49] F. Demichelis, F. Giorgis, C.F. Pirri, E. Tresso, Philos. Mag., B 71 (1995) p. 1015. [50] F. Demichelis, G. Crovin, C.F. Pirri, E. Tresso, P. Rava, R. Gallini.R. Rizzoli, C. Summonate, Sol. Energy Mater. Sol. Cells B 37 (1995) p. 315. [51] Akimori Tabata, Masahiko Mori, "Structural changes of hot-wire CVD silicon carbide thin films induced by gas flow rates", Thin Solid Films 516 (2008) pp. 626-629. [52] Q. Zhao, C. Li, H. Zhou, H.Wang, B.Wang, H. Yan, J. Cryst. Growth 260 (2004) p. 176. [53] Yusuke Komura, Akimori Tabata, Tomoki Narita, Akihiro Kondo, "Influence of gas pressure on low-temperature preparation and film properties of nanocrystalline 3C-SiC thin films by HW-CVD using SiH4/CH4/H2 system", Thin Solid Films 516 (2008) pp. 633-636. [54] A. Guivarch, J. Richard, M. Le Contellec, E. Ligeon, J. Fontenille, J. Appl. Phys. 51 (1979) p. 407. [55] H. Wieder, M. Cardona, C.R. Guarnieri, Phys. Status Solidi, B Basic Res. 92 (1979) p. 99. [56] J.C. Knights, G. Lucovsky, R.J. Nemanich, J. Non-Cryst. Solids 32 (1979) p. 393. [57] Y. Katayama, K. Usami, T. Shimada, Philos. Mag., B 43 (1981) 283. [58] Bibhu P. Swain, Rajiv O. Dusane, "Effect of filament temperature on HWCVD deposited a-SiC:H", Materials Letters 60 (2006) pp. 2915-2919. [59] Bibhu P. Swain, "Influence of process pressure on HW-CVD deposited a-SiC:H films", Surface & Coatings Technology 201 (2006) pp. 1132-1137. [60] A. Tabata, M. Kuroda, M. Mori, T. Mizutani and Y. Suzuoki, "Band gap control of hydrogenated amorphous silicon carbide films prepared by hot-wire chemical vapor deposition", Journal of Non-Crystalline Solids 338-340 (2004) pp. 521-524. [61] S.M. Sze, Physics of Semiconductor Devices, John Wiley and Sons, Inc, New York (1981). [62] R. Hull, Properties of Crystalline Silicon, INSPEC, London (1999). [63] D. Huber, A. Bachmeier, R. Wahlich, H. Herzer [Proc. Conf. Semiconductor Silicon 1986 Eds. H.R. Huff, T. Abe, B. Kobessen (Electrochemical Society, USA, 1986) pp. 1022-1032]. [64] G. Y. Hu, Yuliang He, Chenzhong Yin, Guangxu Cheng, Luchun Wang, and Xiangna Liu, "The structure and properties of nanosize crystalline silicon films", J. Appl. Phys. 75 (2), (1994). [65] N. Wada, P.J. Gaczi, S.A. Solin, J. Non-Cryst. Solids 35/36 (1980) p. 543. [66] Bibhu P. Swain, Rajiv O. Dusane, "Multiphase structure of hydrogen diluted a-SiC:H deposited by HWCVD", Materials Chemistry and Physics 99 (2006) pp. 240-246. [67] M. Katiyar, Y.H. Yang, J.R. Abelson, J. Appl. Phys. 78 (1995) 1659. [68] Bibhu P. Swain, Bhabani S. Swain, Yung-Bin Chung, Nong M. Hwang, "Small-angle X-ray scattering from nano-Si embedded a-SiC:H deposited by hot-wire chemical vapor deposition", Solid State Sciences 11 (2009) pp. 1408-1411. [69] 許樹恩, 吳泰伯, "X光繞射原理與材料結構分析", 材料科學學會. [70] Y. Tawada, K. Tsuge, M. Kondo, H. Okamoto, and Y. Hamakawa, "Properties and structure of a-SiC:H for high-efficiency a-Si solar cell". [71] M. H. Brodsky, M. Cardona, and J. J. Cuomo, Phys. Rev. B 16, (1977) p. 3556. [72] C. C. Tsai and H. Fritzsche, Sol. Energy 1, (1979) p. 29. [73] T. Yagi, Y. Uraoka, T. Fuyuki, "Ray-trace simulation of light trapping in silicon solar cell with texture structures", Sol. Energy Mater. Sol. Cells, vol. 90, pp. 2647-2656, 2006.
摘要: 矽異質接面太陽電池因同時具備低成本與高效能的特點而受到重視,為了追求更高的光線轉換效率,可嘗試提升此元件窗口層的光學能隙。有鑑於以上目標,本研究利用熱燈絲化學氣相沉積法,在SiH4、B2H6、H2和CH4等工作氣體的反應下,製備嵌入(embedded)奈米晶矽的寬能隙硼摻雜碳化矽薄膜,並實際應用於矽異質接面太陽電池入光層。 為確定碳化矽薄膜性能,使用傅立葉轉換紅外光譜儀、X光繞射分析儀、X射線光電子能譜儀、拉曼光譜儀、場發射掃描式電子顯微鏡、霍爾效應量測以及n&k光學量測系統,對嵌入奈米晶矽的碳化矽薄膜進行材料分析。實驗發現,氫氣的流量分率在薄膜化學組態、微結構與光電特性上,扮演著十分重要的角色。研究結果指出,氫氣流量分率增加可提升矽膜結晶率;膜的碳含量對光學能隙及摻雜濃度具正相關,電阻率和活化能則呈現負相關。除此之外,Si-C也隨膜內含碳量的提高有增強的趨勢,而Si-H反之。 透過優化的碳化矽薄膜,結合各項製程步驟,開發Al/ITO/p-type Si-NCs:SiC films/intrinsic a-Si:H/n-type c-Si:H/ITO/Ag/Al 結構的矽異質接面太陽電池,成功製作開路電壓為520mV、短路電流密度42.5 mA/cm2,效率達14.50%的光轉換元件。
Silicon heterojunction solar cell (Si-HJ) is one of the most promising structures with low cost and high conversional efficiency. In this kind of cell, a window layer with wide optical band gap characteristic is demanded. In this study, wide band gap boron-doped Si nanocrystals embedded in silicon carbide films (Si-NCs:SiC) were prepared by hot-wire chemical vapor deposition for Si-HJ window layer applications. The SiH4, B2H6, H2 and CH4 were used as source gas. The material properties of the prepared Si-NCs:SiC films were characterized by Fourier-transform infrared spectrometer, X-ray diffractormeter, X-ray photoelectron spectrometer, Raman spectrometer, field emission scanning electronic microscopy, Hall and n&k analyzer. The experimental results indicate that the H2 flow ratio plays an important role in the chemical composition, microstructure, optical and electronic properties of the Si-NCs:SiC films. It was found that the crystalline fraction of Si-NCs:SiC films increased with the increasing of H2 flow ratio. The optical band gap and doping concentration show the positively correlation, while the resistivity and active energy show the negatively correlation with the carbon contents of the Si-NCs:SiC films. The enhancement in Si-C stretching mode and opposite the Si-H wagging mode as the carbon contents of the Si-NCs:SiC films were increased. After the optimization of p-type Si-NCs:SiC deposition parameters, we fabricated the Si-HJ with structures of Al/ITO/p-type Si-NCs:SiC films/intrinsic a-Si:H/n-type c-Si:H/ITO/Ag/Al and characterized the cell performance. Finally, the Si-HJ cell with conversion efficiency of 14.50 %, open-circuit voltage of 520 mV, and short-circle current density of 42.5 mA/cm2 was achieved.
Appears in Collections:材料科學與工程學系



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.