Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10880
標題: 製作具選擇性射極之多晶矽太陽能電池
Fabricated the selective emitter polycrystalline silicon solar cell
作者: 蔡明彥
Tsai, Ming-Ying
關鍵字: Solar cells
太陽電池
Select emitter
Doping P Ag paste
Self-alignment one step co-firing
選擇性射極
摻雜磷銀膠
自我對準一次燒結
出版社: 材料科學與工程學系所
引用: 參考文獻 [1] 蔡進,超高效率太陽電池-從愛因斯坦的光電效應談起,物理雙月刊(廿七卷五期) ,2005年。 [2] 呂宗昕,全面進攻奈米科技與太陽能電池,天下文化。 [3] 施敏,半導體元件物理與製作技術,國立交通大學,2003年。 [4] 黃惠良、曾百亨等,太陽電池,五南出版社,2008年。 [5] 龍建華等,選擇射極矽晶太陽能電池技術介紹,工業材料雜誌,2010年。 [6] Felix Book, Bernd Raabe, Giso Hahn, Preprint 23rd EC PVSEC, September 1-5, 2008, Valencia。 [7] A. Dastgheib-Shirazi, H. Haverkamp, B. Raabe, F. Book, G. Hahn, 23rd European Photovoltaic Solar Energy Conference (2008)。 [8] B.R. Wu, D.S. Wuu, M.S. Wan, H.Y. Mao, R.H. Horng, ,Thin Solid Films 517 (2009) 4749–4752。 [9] A. Mouhoub, B. Benyahia, B. Mahmoudi and A. Mougas, Rev. Energ. Ren.: ICPWE (2003) 83-86。 [10] Yung-HsienWu, Lun-Lun Chen, Jia-Rong Wu and Min-Lin Wu, Semicond. Sci. Technol. 25 (2010) 015001 (5pp)。 [11] Rachid Chaoui*, Abdelghani Messaoud, Desalination 209 (2007) 118–12。 [12] T. Juvone n *, J . H and P. Kuivalainen, Physica Scripta. T101, 96^98, 2002。 [13] Y. Ein-Eli, N. Gordon, D. Starosvetsky .Electrochem. Solid States Lett., Vol.7, p.75,(2004)。 [14] Ching-Hsi Lin , Song-Yeu Tsai, Shih-Peng Hsu, Ming-Hsun Hsieh, Solar Energy Materials & Solar Cells 92 (2008) 1011– 101。 [15] S.B. Rane, P.K. Khanna, T. Seth, G.J. Phatak, D.P. Amalnerkar, B.K. Das, Materials Chemistry and Physics 82 (2003) 237–24。 [16] Yaping Zhang, Yunxia Yang, Jianhua Zheng,Wei Hua, Guorong Chen, Materials Chemistry and Physics 114 (2009) 319–32。 [17] 張勁燕,半導體製程設備,五南出版社,2000年。 [18] 羅正忠等,半導體製程技術導論,台灣培生教育出版,2005年。 [19] T. C. Ro de , S. J. Eisele , P. Grabitz , C. Wagner , G. Kulushich ,J. R. Ko hle and J. H. Werner, Prog. Photovolt: Res. Appl. 2010; 18:505–51。 [20] BINARY (SGTE) Alloy Phase Diagrams: http ://www.crct.polymtl.ca/fact/documentation/BINARY/BINARY_Figs.htm [21] MTDATA – Phase Diagram Software from the National Physical Laboratory: http://mtdatasoftware.tech.officelive.com/phdiagrams/psi.htm [22] 林明獻,太陽能技術入門,全華圖書,2008年。 [23] Bertram, A. Wolf, U. Belledin, E. A. Wotke and D. Biro, 24th European PV Solar Energy Conference and Exhibition, 21-25 September 2009。 [24] 沈輝、曾祖勤,太陽能光電技術,五南出版社,2005年。
摘要: 摘要 在本研究在研製新式含磷銀膠,並開發製程將之應用於矽晶太陽電池的選擇性電極結構上,進一步提升傳統矽晶太陽電池的轉換效率。首先,將粗糙化P型基板之表面進行摻成為表面片阻值60歐姆、100歐姆之N型多晶矽晶片,利用網版印刷技術將三種不同磷含量之新型銀膠網印在氮化矽抗反射層上,接著利用具自我對準一次高溫燒結擴散技術進行擴散後完成選擇性射極電池結構,此電池相較於一般矽晶電池可發現在60歐姆最佳參數下可提升Jsc 0.02A/cm2、FF 10.2%、Efficiency 2.73 %,並改善串連電阻0.17歐姆;而100歐姆最佳參數下可提升 Jsc 0.03 A/cm2、FF 1.8 %、Efficiency 1.4 %,並改善串連電阻0.09歐姆。 在AM1.5太陽光譜模擬器光源量測下,我們觀察到含磷銀膠電池及未含磷之電池兩者開路電壓皆為0.57 V,在不同波段光伏特性量測中,發現在480nm到600nm範圍之開路電壓分別為0.32 V(未含磷)與0.28 V(含磷)之穩定值,低於全波段光強度量測值,可能因為單一波段光強度太低而導致量測到較低之開路電壓。但當波長低於480nm時,兩者之開路電壓逐漸降低,並觀察到摻磷銀膠之元件具有高於標準元件之開路電壓。在不同波長之外部量子效率量測時,效率峰值波長皆發生於360 nm,其外部量子效率分別為54 %(未含磷)與75 %(含磷),可觀察具選擇性摻磷電極之太陽能電池在紫外光波段具有較高於標準元件之開路電壓與外部量子效率。接著進行入射光功率衰減及兩種不同量測模式(Continuous mode and Flash mode)下其光伏特性量測,觀察到照射光功率衰減下開路電壓及短路電流逐漸降低,但是填充因子及效率反而逐漸變佳,並發現Flash mode在電性及良率上皆優於Continuous mode,推測可能因光聚集之熱進而降低太陽能電池之光伏效率。
Abstract This thesis presents a simple process to fabricate solar cell with a selective emitter by using a phosphorus doped Ag paste. To fabricated poly-Si solar cells, the surface-textured p-type poly-silicon wafers were used as substrates. The n-type poly-Si layers with two different sheet resistances, 60 and 100 ohm, had been fabricated at high temperature furnace. A silicon nitride film was deposited onto front side of poly-Si wafer as anti-reflection layer through a plasma-enhanced chemical vapor deposition. Finally, the front- and back-side electrodes were screen-printed with Ag and Al pastes, respectively. In order to form the selective emitter structure, a self-alignment screen-printing and one step co-firing diffusion techniques were used with novel Ag:P paste (Ag paste mixed with P2O5). Comparing with the standard sample, the cell performances of the 60ohm poly-Si wafers with a selective emitter were improved with short-current density (Jsc) of 0.01 A/cm2, fill-factor (FF) of 8%, serial resistance (Rs) of 0.17ohm, and efficiency of 2.4%. The better cell with 100-ohm poly-Si wafers with a selective emitter had the improvements of Jsc of 0.03 A/cm2, FF of 1.8 % Rs of 0.09ohm, and efficiency of 1.4 %, compared with the standard sample. Moreover, the open-voltages (Voc) values of both poly-Si solar cells with and without selective emitter are 0.57 V. After a series of cell characteristics, we found that the Voc values of cell with selective emitter are larger than standard cell. Measuring under a 480 to 600 nm incident light, the different Voc values of 0.28 V and 0.32 V were found from cell with and without selective emitter, respectively. This result may be caused by the intensity of a separated incident light is too low to reduce the open-voltage of the poly-Si solar cell. Smaller Voc values were measured when the wavelength of incident light was smaller than 480 nm. For external quantum efficiency (EQE) measurement, the peak efficiency value is occurred at 360 nm. The EQE values of 54 % (standard cell) and 75 % (elective emitter) were measured. In addition, the solar cell with selective emitter shows better Voc and efficiency than standard cell in short-wavelength range. Finally, poly-Si solar cell properties such as conversional efficiency, open-voltage, short-current and fill-factor were observed under both continuous and flash solar photovoltaic measurement modes. It was found that the cell performances measured under flash mode show the better values in electric and yield. This result might due to the thermal heat effect to reduce the performance and efficiency of the poly-Si solar cell.
URI: http://hdl.handle.net/11455/10880
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.