Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10897
標題: 異種不銹鋼多道銲接之相變化研究
The Study of Phase transformation in Dissimilar Stainless Steels during the Multipass Welding
作者: 謝之駿
Hsieh, Chih-Chun
關鍵字: 異種不銹鋼
Dissimilar stainless steel
多道銲接
熔融區
重疊熱影響區
相變化
擴散係數
原子跳動頻率
Vitek擴散模式
一般擴散方程式
multipass welding
fusion zones
overlapping heat-affected zones
phase transformation
diffusivity
atom jump frequency
Vitek diffusion model
general diffusion equation
出版社: 材料科學與工程學系所
引用: 第六章 參考文獻 [1] 潘春旭,異種鋼及異種金屬銲接—顯微結構特徵及其轉變機理,人民交 通出版社,第1-2頁,2000年。 [2] J. A. Self, D. K. Matlock, and D. L. Olson, “An evaluation of austenitic Fe-Mn-Ni weld metal for dissimilar metal welding,” Welding Research Supplement, Vol. 63, No. 9, pp. 282s-288s, 1984. [3] V. V. Satyanarayana, G. M. Reddy, and T. Mohandas, “Dissimilar metal friction welding of austenitic–ferritic stainless steels,” Journal of Materials Processing Technology, Vol. 160, No. 2, pp. 128–137, 2005. [4] E. J. Barnhouse and J. C. Lippold, “Microstructure/property relationship in dissimilar welds between duplex stainless steel and carbon steels,” Welding Journal, Vol. 77, No. 12, pp. 477-487, 1998. [5] 李亞江,銲接冶金學—材料銲接性,機械工業出版社,第264-272頁, 2007年。 [6] O. Yilmaz and H. Celik, “Electrical and thermal properties of the interface at diffusion-bonded and soldered 304 stainless steel and copper bimetal,” Journal of Materials Processing Technology, Vol. 141, No.1, pp. 67-76, 2003. [7] H. T. Lee, S. L. Jeng, C. H. Yen, and T. Y. Kuom, “Dissimilar welding of nickel-based alloy 690 to SUS 304L with Ti addition,” Journal of Nuclear Materials, Vol. 335, No. 1, pp. 59-69, 2004. [8] U. Kamachi Mudali, B. M. Ananda Rao, K. Shanmugam, R. Natarajan, and Baldev Raj, “Corrosion and microstructural aspects of dissimilar joints of titanium and type 304L stainless steel,” Journal of Nuclear Materials, Vol. 321, No. 1, pp. 40-48, 2003. [9] N. O. Zdemir, “Investigation of the mechanical properties of friction-welded joints between AISI 304L and AISI 4340 steel as a function rotational speed,” Materials Letters, Vol. 59, No. 19-20, pp. 2504-2509, 2005. [10] U. Huseyin, D. D. Claudio, A. Alberto, G. Tommaso, and G. Carla, “Friction stir welding of dissimilar Al 6013-T4 to X5CrNi18-10 stainless steel,” Materials and Design, Vol. 26, No. 1, pp. 41-46, 2005. [11] K. Guan, X. Xu, H. Xu, and Z. Wang, “Effect of aging at 700oC on precipitation and toughness of AISI 321 and AISI 347 austenitic stainless steel welds,” Nuclear Engineering and Design, Vol. 235, No. 23, pp. 2485-2494, 2005. [12] A. H. Eisawy, “Characterization of the GTAW fusion line phases for superferritic stainless steel weldments,” Journal of Materials Processing and Technology, Vol. 118, No. 1-3, pp. 127-131, 2001. [13] R. Kacar and O. Baylan, “An investigation of microstructure/property relationships in dissimilar welds between martensitic and austenitic stainless steels,” Materials and Design, Vol. 25, No. 4, pp. 317-329, 2004. [14] C. Pan and E. Zhang, “Morphologies of the transition region in dissimilar austenitic-ferritic weld,” Materials Characterization, Vol. 36, No. 1, pp. 5-10, 1996. [15] R. Wise, “New technique for joining dissimilar materials,” Welding Review International, Vol. 12, No. 1, pp. 40-42, 1993. [16] Z. Sun, “Feasibility of producing ferritic/austenitic dissimilar metal joints by high energy density laser beam process,” International Journal of Pressure Vessels Piping, Vol. 68, No. 2, pp. 153-160, 1996. [17] B. I. Voronenko, “Austenitic-ferritic stainless steels: a state-of-the-art review,” Metal Science and Heat Treatment, Vol. 39, No. 9-10, pp. 428-436, 1997. [18] D. Y. Kobayashi and S. Wolynec, “Evaluation of the low corrosion resistant phase formed during the sigma phase precipitation in duplex stainless steels,” Metal Science and Heat Treatment, Vol. 2, No. 4, pp. 239-247, 1999. [19] L. Karlsson, L. Ryen, and S. Pak, “Precipitation of intermetallic phases in 22% Cr duplex stainless weld metals,” Welding Journal, Vol. 74, No. 1, pp. 28s-40s, 1995. [20] T. H. Chen, K. L. Weng, and J. R. Yang, “The effect of high-temperature exposure on the microstructural stability and toughness property in a 2205 duplex stainless steel,” Materials Science and Engineering A, Vol. 338, No. 1-2, pp. 259-270, 2002. [21] J. O. Nilsson, P. Kangas, T. Karlsson, and A. Wilson, “Mechanical properties, microstructural stability and kinetics of σ-phase formation in 29Cr-6Ni-2Mo-0.38N superduplex stainless steel,” Metallurgical and Materials Transactions A, Vol. 31, No. 1, pp. 35-45, 2000. [22] Y. S. Ahn, M. Kim, and B. H. Jeong, “Effect of aging treatments on microstructural evolution on corrosion resistance of tungsten substituted 2205 duplex stainless steel,” Materials Science and Technology, Vol. 18, No. 4, pp. 383-388, 2002. [23] Y. S. Ahn and J.P. Kang, “Effect of Aging treatments on microstructure and impact properties of tungsten substituted 2205 duplex stainless steel,” Materials Science and Technology, Vol. 16, No. 4, pp. 382-388, 2000. [24] J. O. Nilsson and A. Wilson, “Influence of isothermal phase transformations on toughness and pitting corrosion of super duplex stainless steel SAF2507,” Materials Science and Technology, Vol. 67, No. 5, pp. 545-554, 1993. [25] L. Jianchun, W. Tuyan, and R. Yves, “δ phase precipitation and its effect on the mechanical properties of a super duplex stainless steel,” Materials Science and Engineering A, Vol. 174, No. 2, pp.149-156, 1994. [26] S. M. Dubiel, “Sigma phase—one of the main reasons for deterioration of stainless steel properties,” Hyperfine Interactions, Vol. 189, No. 1-3, pp. 53-61, 2009 [27] S. Tsukamoto, H. Harada, and H. K. D. H. Bhadeshia, “Metastable phase solidification in electron beam welding of dissimilar stainless steels,” Materials Science and Engineering A, Vol. 178, No. 1-2, pp. 189-194, 1994. [28] G. Lothongkum, P. Chaumbai, and P. Bhandhubanyong, “TIG pulse welding of 304L austenitic stainless steel in flat, vertical and overhead positions,” Journal of Materials Processing Technology, Vol. 89-90, pp. 410-414, 1999. [29] E. Capello, P. Chiarello, B. Previtali, and M. Vedani, “Laser welding and surface treatment of a 22Cr–5Ni–3Mo duplex stainless steel,” Materials Science and Engineering A, Vol. 351, No. 1-2, pp. 334-343, 2003. [30] N. A. McPherson, K. Chi, and T. N. Baker, “Submerged arc welding of stainless steel and the challenge from the laser welding process,” Journal of Materials Processing Technology, Vol. 134, No. 2, pp. 174-179, 2003. [31] F. Velasco, G. Blanco, A. Bautista, and M. A. Martinez, “Effect of welding on local mechanical properties of stainless steels for concrete structures using universal hardness tests,” Construction and Building Materials, Vol. 23, No. 5, pp. 1883-1891, 2009 [32] Y. Komizo, K. Ogawa, and S. Azuma, “HAZ embrittlement mechanism in high Cr, Mo duplex stainless steel and effects of Ni, N on it,” Quarterly Journal of the Japan Welding Society, Vol. 8, No. 2, pp. 78-85, 1990. [33] K. Ogawa, M. Miura, and Y. Komizo, “HAZ toughness of high silicon containing duplex stainless steel. Study on welding of high silicon containing stainless steels (II),” Quarterly Journal of the Japan Welding Society, Vol. 9, No. 2, pp. 61-67, 1991. [34] A. Turnbull, P. E. Francis, M. P. Ryan, L. P. Orkney, A. J. Griffiths, and B. Hawkins, “A novel approach to characterizing the corrosion resistance of super duplex stainless steel welds,” Corrosion, Vol. 58, No. 12, pp. 1039-1048, 2002. [35] K. Masahito and T. Yasunori, “Recrystallization with α prime → γ reverse transformation and high temperature deformation on single phase stainless steel SUS 304,” Journal of the Iron and Steel Institute of Japan, Vol. 80, No 3, pp. 67-71, 1994. [36] B. Riad, B. Mabrouk, B. Brigitte, K. Charlie, B. Brahim, and M. Halim, “Phase transformation and mechanical behavior in annealed 2205 duplex stainless steel welds,” Materials Characterization, Vol. 59, No. 4, pp. 447-453, 2008. [37] A. Y. Chen, J. B. Zhang, H. W. Song, and J, Lu, “Thermal-induced inverse γ/α prime phase transformation in surface nanocrystallization layer of 304 stainless steel,” Surface and Coatings Technology, Vol. 201, No. 16-17, pp. 7462-7466, 2007 [38] D. W. Lin, C. D. Zhou, C. Q. Wang, and H. W. Song, “In-situ observation of austenite to ferrite transformation in a duplex stainless steel during heating process,” Transactions of Materials and Heat Treatment, Vol. 28, No. 5, pp. 57-61, 2007. [39] X. J. Liang and S. H. Jiao, “Simulations of transformation from ferrite to austenite in stainless steel,” Transactions of Materials and Heat Treatment, Vol. 28, No. 4, pp. 144-148, 2007 [40] J. Y. Park and Y. S. Park, “The effects of heat-treatment parameters on corrosion resistance and phase transformations of 14Cr-3Mo martensitic stainless steel,” Materials Science and Engineering A, Vol. 448-451, pp. 1131-1134, 2007 [41] O. M. Akselsen, R. Aune, V. Olden, and G. Rorvik, “Effects of phase transformations on residual stresses in welding of stainless steels,” International Journal of Offshore and Polar Engineering, Vol. 17, No. 2, pp. 145-151, 2007. [42] T. D. Anderson, J. N. Dupont, M. J. Perricone, and A. R. Marder, “Phase transformations and microstructural evolution of Mo-bearing stainless steels,” Metallurgical and Materials Transactions A, Vol. 38, No. 4, pp. 671-685, 2007 [43] Y. C. Lin and P. Y. Chen, “Effect of nitrogen content and retained ferrite on the residual stress in austenitic stainless steel weldments,” Material Science and Engineering A, Vol. 307, No. 1-2, pp.165-171, 2001. [44] R. A. Walker and T. G. Gooth, “Arc weldability of stainless steels,” Metals and Materials, Vol. 2, No. 1, pp. 18-24, 1986. [45] H. U. Hong, B. S. Rho, and S. W. Nam, “A study on the crack initiation and growth from δ-ferrite/γ phase interface under continuous fatigue and creep-fatigue conditions in type 304L stainless steels,” International Journal of Fatigue, Vol. 24, No. 10, pp. 1063-1070, 2002. [46] F. Czerwinski, A. Brodtka, A. Z. Lipiec, J. H. Sunwoo, and J. A. Szpunar, “Role of δ-ferrite in edge-crack formation during hot-rolling of austenitic stainless steels,” Scripta Materialia, Vol. 37, No. 8, pp. 1231-1235, 1997 [47] T. P. S. Gill, “Solidification cracking in austenitic stainless steel welds”, Sãdhanã, Vol. 28, pp. 359-382, 2003. [48] L. T. Robertson, T. B. Hilditch, and P. D. Hodgson, “The effect of prestrain and bake hardening on the low-cycle fatigue properties of TRIP steel,” International Journal of Fatigue, Vol. 30, No. 4, pp. 587-594, 2008. [49] X. Cheng, R. Petrov, L. Zhao, and M. Janssen, “Fatigue crack growth in TRIP steel under positive R-ratios,” Engineering Fracture Mechanics, Vol. 75, No. 3-4, pp. 739-749, 2008. [50] R. Sierra, J. A. Nemes, X. Cheng, R. Petrov, L. Zhao, and M. Janssen, “Investigation of the mechanical behavior of multi-phase TRIP steels using finite element methods,” International Journal of Mechanical Sciences,” In Press. [51] E. J. Melero, N. H. Dijk, L. Zhao, J. Sietsma, S. E. Offerman, J. P. Wright, and S. Zwaag, “Characterization of individual retained austenite grains and their stability in low-alloyed TRIP steels,” Acta Materialia, Vol. 55, No. 20, pp. 6713-6723, 2007. [52] K. Wakasa and C. M. Wayman, “The morphology and crystallography of ferrous lath martensite studies of Fe-20%Ni-5%Mn —II transmission electron microscopy,” Acta Metallurgica, Vol. 29, pp. 991-1011, 1981. [53] 呂樸石、黃振賢,金屬材料,文京出版社,第二章: 鐵和鋼,第19版,第164頁,民國71年。 [54] 蔡明欽,鋼顯微組織與性質,第5章: 麻田散鐵的形成,第2版,第97頁,五南圖書出版公司,民國93年。 [55] J. Dash and H. M. Otte, “The martensite transformation in stainless steel,” Acta Metallurgica, Vol. 11, pp. 1169-1178, 1963. [56] 徐祖耀,馬氏體相變與馬氏體,第2版,第40~46頁,科學出版社, 1980年。 [57] D. A. Porter and K. E. Easterling, Phase transformations in metals and alloys, Nelson Thornes Ltd., 2nd Ed., p. 174, 1992. [58] C. H. Shih, B. L. Averbach, and M. Cohen, “Some characteristics of the isothermal martensitic transformation,” Trans AIME, Vol. 203, pp. 183-187, 1955. [59] 蔡明欽,鋼顯微組織與性質,第5章: 麻田散鐵的形成,第2版,第94頁,五南圖書出版公司,民國93年。 [60] 張文鋮,銲接冶金學,機械出版社,第139頁,1988年。 [61] A. F. Padilha and P. R. Rios, “Decomposition of austenitic stainless steels,” ISIJ International, Vol. 42, No. 4, p. 331, 2002. [62] B. Weiss and R. Stickler, “Phase instabilities during high temperature exposure of 316 austenitic stainless steel,” Metallurgical and Materials Transactions B, Vol. 3, No. 4, pp. 851-866, 1972. [63] J. K. L. Lai, K. W. Wong, and D. J. Li, “Effect of solution treatment on the transformation behavior of cold-rolled duplex stainless steels,” Materials Science and Engineering A, Vol. 203, No. 1-2, pp. 356-364, 1995. [64] C. H. Shek and K. W. Wong, “Hot tensile properties of 25Cr-8Ni duplex stainless steel containing cellular (σ+γ2) structure after various thermal treatments,” Materials Science and Engineering A, Vol. 231, No. 1-2, pp. 42-47, 1997. [65] J. O. Nilsson, “Super duplex stainless steels,” Materials Science and Technology, Vol. 8, No. 8, pp.685-700, 1992. [66] J. M. Howe and H. I. Aaronson, “Aspects of interphase boundary structure in diffusional phase transformations,” Acta Materialia, Vol. 48, No. 15, pp. 3977-3984, 2000. [67] D. A. Porter and K. E. Easterling, Phase transformations in metals and alloys, 2nd Ed., Nelson Thornes Ltd., p. 331, 1992. [68] J. O. Nilsson, “Super duplex stainless steels,” Materials Science and Technology, Vol. 8, No. 8, pp.685-700, 1992. [69] W. Treitschke and G. Tammann, “Enthalpy of formation for σ-phase solid solutions at 1060 K,” Anorg. Chem., Vol. 55, p. 707, 1907. [70] E. C. Bain and W. E. Griffiths, “An introduction to the iron-chromium nickel alloys,” Transactions of the American Institute of Mining, Metallurgical, and Petroleum Engineers, Vol. 75, pp. 166-213, 1927. [71] E. R. Jett and F. Foote, “The Fe-Cr alloy system,” Metals and alloys, Vol. 7, pp. 207-210, 1936. [72] K. Yano and K. Abiko, “Role of carbon and nitrogen on the transformation of the σ-phase in high purified Fe-50 mass%Cr alloys,” Materials Transactions, Vol. 41, No. 1, pp. 122-129, 2000. [73] B. Hattersley and W. Hume-Rothery, “Constitution of certain austenitic steels,” Journal of the Iron and Steel Institute, Vol. 204, pp. 683-701, 1966. [74] E. O. Hall and S. H. Algie, “The sigma phase,” International Metallurgical Reviews, Vol. 11, pp. 61-88, 1966. [75] P. Duhaj, J. Ivan, and E. Makovicky´ “Sigma phase precipitation in austenitic steels,” Journal of the Iron and Steel Institute, Vol. 206, No. pp. 1245-1252, 1968. [76] F. R. Beckitt, “The formation of sigma phase from delta ferrite in a stainless steel,” Journal of the Iron and Steel Institute, Vol. 207, No. 5, pp. 632-638, 1969. [77] W. E. White and I. L. May, “Metallographic observations on the formation and occurrence of ferrite, sigma phase and carbides in austenitic stainless steels. Part III. Electron microscopy studies,” Metallography, Vol. 5, No. 4, pp. 333-345, 1972. [78] A. V. Kington and F. W. Noble, “σ phase embrittlement of a type 310 stainless steel,” Materials Science and Engineering A, Vol. 138, No. 2, pp. 259-266, 1991. [79] E. M. L. E. M. Jackson, P. E. Visser, and L. A. Cornish, “Distinguishing between chi and sigma phases in duplex stainless steels using potentiostatic etching,” Materials Characterization, Vol. 31, No. 4, pp. 185-190, 1993. [80] M. E. Wilms, V. J. Gadgil, J. M. Krougman, and F. P. Ijsseling, “The effect of σ-phase precipitation at 800°C on the corrosion resistance in sea-water of a high alloyed duplex stainless steel,” Corrosion Science, Vol. 36, No. 5, pp. 871-875, 1994. [81] Y. Song, T. N. Baker, and N. A. McPherson, “A study of precipitation in as-welded 316LN plate using 316L/317L weld metal,” Materials Science and Engineering A, Vol. 212, No. 2, pp. 228-234, 1996. [82] F. Iacoviello, M. Habashi, and M. Cavallini, “Hydrogen embrittlement in the duplex stainless steel Z2CND2205 hydrogen-charged at 200°C,” Materials Science and Engineering A, Vol. 224, No. 1-2, pp. 116-124, 1997. [83] J. O. Nilsson, P. Kangas, T. Karlsson, and A. Wilson, “Mechanical properties, microstructural stability and kinetics of σ-phase formation in 29Cr-6Ni-2Mo-0.38N superduplex stainless steel,” Metallurgical and Materials Transactions A, Vol. 31, No. 1, pp. 35-45, 2000. [84] C. S. Huang and C. C. Shih, “Effects of nitrogen and high temperature aging on σ phase precipitation of duplex stainless steel,” Materials Science and Engineering A, Vol. 402, No. 1-2, pp. 66-75, 2005. [85] C. M. Souza, H. F. G. Abreu, S. S. M. Tavares, and J. M. A. Rebello, “The σ phase formation in annealed UNS S31803 duplex stainless steel: Texture aspects,” Materials Characterization, Vol. 59, No. 9, pp. 1301-1306, 2008. [86] J. Brózda and J. Madej, “Cracking of the mixing chamber caused by sigma phase precipitation in austenitic steel welded joints,” Engineering Failure Analysis, Vol. 15, No. 4, pp. 368-377, 2008. [87] M. Vach, T. Kuníková, M. Dománková, P. Ševc, Ľ. Čaplovič, P. Gogola, and J. Janovec, “Evolution of secondary phases in austenitic stainless steels during long-term exposures at 600, 650 and 800°C,” Materials Characterization, Vol. 59, No. 12, pp. 1792-1798, 2008. [88] T. Koutsoukis, K. Konstantinidis, P. Kokkonidis, E. Papadopoulou, and G. Fourlaris, “Precipitation reactions in superferritic stainless steels,” EMC 2008 14th European Microscopy Congress, Springer Berlin Heidelberg, Aachen, Vol. 2, pp. 449-450, 2008. [89] S. S. M. Tavares, V. Moura, V. C. Costa, M. L. R. Ferreira, and J. M. Pardal, “Microstructural changes and corrosion resistance of AISI 310S steel exposed to 600°C–800°C,” Materials Characterization, Vol. 60, No. 6, pp. 573-578, 2009. [90] J. N. Charles, Handbook of stainless steels, 1st Ed., McGraw-Hill, New York, pp. 4-57, 1977. [91] J. Lee and I. Kim, “Application of small punch test to evaluate sigma phase embrittlement of pressure vessel cladding material,” Journal of Nuclear Science and Technology, Vol. 40, No. 9, pp. 664-671. 2003. [92] D. Peckner and I. M. Bernstein, Handbook of stainless steels, 1st Ed., McGraw-Hill, New York, pp. 1-76, 1977. [93] M. H. Lewis, “Precipitation of (Fe, Cr) sigma phase from austenite,” Acta Metallurgica, Vol. 14, No. 11, pp. 1421-1428, 1966. [94] F. B. Waanders, S. W. Vorster, and H. Pollak, “ The influence of temperature on σ-phase formation and the resulting hardening of Fe-Cr-Mo-alloys,” Hyperfine Interactions, Vol. 120-121, No. 1-8, pp. 751-755, 1999. [95] K Shinohara, T Seo, and K. Kumada, “Recrystallization and sigma phase formation as concurrent and interacting phenomena in 25%Cr-20%Ni steel,” Materials Transactions, JIM, Vol. 20, pp. 713-723, 1979. [96] E. Baerlecken and H. Fabritius, “Umwandlungskinetik der sigmaphase in einer eisen-chrom-legierung mit 48% chrom,” Arch. Eisenhüttenwes., No. 26, pp. 679-686, 1955. [97] C. M. Garzón and A. J. Ramirez, “Growth kinetics of secondary austenite in the welding microstructure of a UNS S32304 duplex stainless steel”, Acta Materialia, Vol. 54, No. 12, pp. 3321-3331, 2006. [98] E. Folkhard, welding metallurgy of stainless steels, Springer-Verlag Wein, New York, p. 126, 1988. [99] J. Barcik, “Mechanism of σ-phase precipitation in Cr-Ni austenitic steels,” Materials Science and Technology, Vol. 4, pp. 5-15, 1988. [100].V. K. Sikka and M. G. Cowgill, “Creep properties of modified 9Cr-1Mo Steel,” Proceedings of Topical Conference on Ferritic Alloys for Use in Nuclear Energy Technologies, AIME, June, pp. 413-423,1983. [101] Y. S. Sato and H. Kokawa, “Preferential precipitation site of sigma phase in duplex stainless steel weld metal,” Scripta Materialia, Vol. 40, No. 6, pp. 659-663, 1999. [102] Y. S. Na, N. K. Park, and R. C. Reed, “Sigma morphology and precipitation mechanism in udimet 720Li,” Scripta Materialia, Vol. 43, No. 7, pp. 585-590, 2000. [103] A. F. Padilha and P. R. Rios, “Decomposition of austenite in austenitic stainless steels,” ISIJ International, Vol. 42, No. 4, pp. 325-337, 2002. [104] B. Weiss and R. Stickler, “Phase instabilities during high temperature exposure of 316 austenitic stainless steel,” Acta Metallurgica, Vol. 3, No. 4, pp. 851-866, 1972. [105] D. Chandra and L. H. Schwartz, “Mössbauer effect study of the 475oC decomposition of Fe–Cr,” Metallurgical and Materials Transactions A, Vol. 2, pp. 511-519, 1971. [106] G. Wahlberg and G. L. Dunlop, “An atom probe study of 475oC embrittlement of duplex stainless steels,” Journal de Physique Colloques A, No. 6, pp. 289-292, 1988. [107] M. B. Cortie and H. Pollak, “Embrittlement and aging at 475°C in an experimental ferritic stainless steel containing 38 wt.% chromium,” Materials Science and Engineering. A, Vol. 199, No. 2, pp. 153-163, 1995. [108] S. Tsuchiya, Y. Ishikawa, and M. Ohtaka, “Atom probe study of the aging embrittlement of cast duplex stainless steel,” JSME International Journal, Vol. 38, No. 3, pp. 384-392, 1995. [109] T. J. Marrow and C. Harris, “The fracture mechanism of 475°C embrittlement in a duplex stainless steel,” Fatigue & Fracture of Engineering Materials & Structures, Vol. 19, No. 7, pp. 935-947, 1996. [110] O. A. Hilders, L. Saenz, and M. Ramos, “Effect of 475°C embrittlement on fractal behavior and tensile properties of a duplex stainless steel,” Journal of Materials Engineering and Performance, Vol. 8, No. 1, pp. 87-90, 1999. [111] M. R. D. Silva, S. S. M. Tavares, and D. Fruchart, “The use of thermomagnetic analysis for detection and quantification of 475°C embrittlement of duplex stainless steels,” Journal of Magnetism and Magnetic Materials A,” Vol. 226-230, pp. 1103-1105, 2001. [112] J. B. Vogt, K. Massol, and J. Foct, “Role of the microstructure on fatigue properties of 475°C aged duplex stainless steels,” International Journal of Fatigue, Vol. 24, No. 6, pp. 627-633, 2002. [113] F. Iacoviello, F. Casari, and S. Gialanella, “Effect of 475°C embrittlement on duplex stainless steels localized corrosion resistance,” Corrosion Science, Vol. 47, No. 4, pp. 909-922, 2005. [114] M. Terada, F. M. Hupalo, and I. Costa, “Effect of alpha prime due to 475°C aging on fracture behavior and corrosion resistance of DIN 1.4575 and MA 956 high performance ferritic stainless steels,” Journal of Materials Science, Vol. 43, No. 2, pp. 425-433, 2008. [115] J. K. Sahu, U. Krupp, and R. N. Ghosh, “Effect of 475°C embrittlement on the mechanical properties of duplex stainless steel,” Materials Science and Engineering A, Vol. 508, No. 1-2, pp. 1-14, 2009. [116] D. Peckner and I. M. Bernsten, Handbook of Stainless Steels, McGraw-Hill Book Company, p. 4-11, 1977. [117] R. J. Gray, V. K. Sikka, and R. T. King, “Detecting transformation of delta-ferrite to sigma phase in stainless steels by advanced metallographic techniques,” Journal of Metals, Vol. 30, No. 11, pp. 18-26, 1978. [118] X. Tang, “Sigma phase characterization in AISI 316 stainless steel,” Microscopy and Microanalysis, Vol. 11, No. 2, pp. 78-79, 2005. [119] 謝鴻志,“氮氣氛時效對309LSi不銹鋼δ/σ/γ相變化行為之研究”,義守大學材料科學與工程研究所碩士論文,第89-94頁,2004年。 [120] J. Barcik, “The kinetics of σ-phase precipitation in AISI 310 and AISI 316 steels,” Metallurgical and Materials Transactions A, Vol. 14, No. 3, pp. 635-641, 1983. [121] D. M. E. Villanueva, F. C. P. Junior, R. L. Plaut, and A. F. Padilha, “Comparative study on sigma phase precipitation of three types of stainless steels: austenitic, superferritic and duplex,” Materials Science and Technology, Vol. 22, No. 9, pp. 1098-1104, 2006. [122] A. L. Shaeffler, “Constitution diagram for stainless steel weld metal,” Metal Progress, Vol. 56, pp. 680B-681B, 1949. [123] S. Konosu and H. Mashiba, “Effects of pretest aging on creep crack growth properties of type 308 austenitic stainless steel weld metals,” Engineering Failure Analysis, Vol. 8, pp. 75-85, 2001. [124] M. C. Mataya and M. J. Carr, “Characterization of inhomogeneities in complex austenitic stainless steel forgings,” Deformation Processing and Structure, ASM Materials Science Seminar, St. Louis, MO, USA, October 23-24, pp. 448-459 1982. [125] G. S. Reis, A. M. Jorge, and O. Balancin, “Influence of the microstructure of duplex stainless steels on their failure characteristics during hot deformation,” Materials Research, Vol. 3, No. 2, pp.31-35, 2000. [126] N. Lopez, M. Cid, and M. Puiggali, “Influence of phase on mechanical properties and corrosion resistance of duplex stainless steels”, Corrosion Science, Vol. 41, pp.1615-1631, 1999. [127] K. Ravindranath and S. N. Malhotra, “Influence of aging on intergranular corrosion of a 25% chromium-5% nickel duplex stainless steel,” Corrosion, Vol. 50, No.4, pp.318-328, 1994. [128] J. Wergrzyn and A. Klimpel, “Effect of alloy elements on sigma phase formation in 18-8 weld metals”, Welding Journal, Vol. 60, No. 8, pp. 146s-154s, 1981. [129] J. Barcik and B. Brzycka, “Chemical composition of σ phase precipitation in chromium-nickel austenitic steels,” Materials Science, Vol. 17, No. 5, pp. 256-260, 1983. [130] D. Y. Lin, T. C. Chang, and G. L. Liu, “Effect of Si contents on the growth behavior of σ phase in SUS 309L stainless steels,” Scripta Materialia, Vol. 49, No. 9, pp. 855-860, 2003. [131] 謝鴻志、林東毅,“氮氣氛時效下Si含量與Cr/Ni當量比對309LSi銲條鋼δ/σ/γ相變化之研究”,銲接與切割,第14卷,第2期,第62-69頁,2004年。 [132] F. Ebrahimi and J. R. Castillo-Gomez, “The effect of plastic deformation on f racture morphology of the sigma phase in the Nb-Ti-Al system,” Acta Metallurgica et Materialia, Vol. 40, No. 6, pp. 1409-1416, 1992. [133] B. J. Aragão and F. Ebrahimi, “High temperature deformation of Nb-Ti-Al alloys with σ + γ microstructure,” Materials Science and Engineering A, Vol. 208, No. 1, pp. 37-46, 1996. [134] A. Blachowski, J. Cieslak, S. M. Dubiel, and J. Zukrowski, “Effect of titanium on the kinetics of the σ-phase formation in a small grain Fe–Cr alloy,” Journal of Alloys and Compounds, Vol. 308, No. 1-2, pp. 189-192, 2000. [135] O. Rios, D. M. Cupid, H. J. Seifert, and F. Ebrahimi, “Characterization of the invariant reaction involving the L, η, γ and σ phases in the Ti–Al–Nb system,” Acta Materialia, Vol. 57, No. 20, pp. 6243-6250, 2009. [136] J. T. Gow and O. E. Harder, “Balancing the composition of cast 25 Per cent chromium-12 per cent nickel type alloys”, Trans. ASM., Vol. 30, pp.855-935, 1942. [137] L. R. Woodyatt, C. T. Sims, and H. J. Beatty, Jr., “Prediction of sigma-type phase occurrence from compositions in austenitic superalloys,” Transactions of The Metallurgical Society of AIME, Vol. 236, No. 4, pp. 519-527, 1966. [138] F. C. Hull, “The effect of δ-ferrite on the hot cracking of stainless steel”, Welding Journal, Vol. 46, No. 9, pp. 399s-409s, 1980. [139] R. Badji, M. Bouavdallah, and B. Bacroix, “Effect of solution treatment temperature on the precipitation kinetic of σ-phase in 2205 duplex stainless steel welds”, Materials Science and Engineering. A, Vol. 496, No. 1-2, pp. 447-454, 2008. [140] T. P. S. Gill, M. Vijayalakshmi, J. B. Gnanamoorthy, and K. A. Padmanabhan “Transformation of delta-ferrite during the postweld heat treatment of type 316L stainless steel weld metal”, Welding Journal, Vol. 65, No. 5, pp. 122-128, 1986. [141] D. Y. Lin, G. L. Liu, T. C. Chang, and H. C. Hsieh, “Microstructure development in 24Cr-14Ni-2Mn stainless steel after aging under various nitrogen/air ratios”, Journal of Alloys and Compounds, Vol. 377, No. 1-2, pp. 150-154, 2004. [142] H. Brandis, H. Heimann, and E. Schmidtmann, “Einflub des Stickstoffs auf das Ausscheidungsverhalten des Stahles X3CrNiMoNbN2317”, TEW-Techn. Ber., Vol. 2, pp.150-166, 1976 [143] O. Smuk, P. Nenonen, H. Hämminen, and J. Liimatinen, “Microstructures of a powder metallurgy–hot-isostatically pressed super duplex stainless steel forming in industrial heat treatments”, Metallurgical and Materials Transactions A, Vol. 35, No. 7, pp. 2013-2019, 2004. [144] B. Hallst, The SGTE case book, 2nd Ed., CRC Press, pp. 155-160, 2008. [145] M. Lindholm, Licentiate Thesis: Royal Institute of Technology, Stockholm, Högskoletryckerizt, 1995. [146] J. Erneman, M. Schwind, L. Nylöf, J. O. Nilsson, H. O. Andren, and J. Ågren, “Comparison between quantitative metallography and modeling of σ-phase particle growth in AISI 347 stainless steel,” Metallurgical and Materials Transactions A, Vol. 36, No. 10, pp. 2595-2600, 2005. [147] N. Saunders and A. P, Miodownik, CALPHAD (Calculation of Phase Diagrams) A comprehensive guide, 1st Ed., Elsevier Science Ltd., pp. 328-332, 1998. [148] T. H. Chen and J. R. Yang, “Effects of solution treatment and continuous cooling on σ-phase precipitation in a 2205 duplex stainless steel,” Vol. 311, No. 1-2, pp. 28-41, 2001. [149] S. H. Hong and Y. S. Han, “Phenomena and mechanism on superplasticity of duplex stainless steels,” Metals and Materials International, Vol. 6, No. 2, pp. 161-167, 2000. [150] K. Holm, J. D. Embury, and G. R. Purdy, “Structure and properties of microduplex Zr-Nb alloys,” Acta Metallurgica, Vol. 25, No. 10, pp. 1191-1200, 1977. [151] J. R. Spingarn and W. D. Nix, “Diffusional creep and diffusionally accommodated grain refinement,” Acta metallurgica, Vol. 26, No. 9, pp. 1389-1398, 1978. [152] T. Chandra and R. Kuchlmayr, “Effect of strain rate on sigma phase formation in ferrite-austenite stainless steel at high temperatures,” Journal of Materials Science, Vol. 23, No. 2, pp. 723-728, 1988. [153] F. Abe, H. Arki, and T. Noda, “Discontinuous precipitation of σ-phase during recrystallization in cold rolled Fe-10Cr-30Mn austenite,” Materials Science and Technology, Vol. 4, No. 10, pp. 885-893, 1988. [154] C. S. Huang and H. C. Chen, “A discussion on stainless steels welding (II),” Welding and Cutting, Vol. 8, No. 2, pp. 48-54, 1998. [155] S. Zormalia, T. Koutsoukis, E. Papadopoulou, P. Kokkonidis, and G. Fourlaris, “Effect of ageing in cold rolled superaustenitic stainless steels,” EMC 2008 14th European Microscopy Congress, Springer Berlin Heidelberg, Aachen, Vol. 2, pp. 451-452, 2008. [156] C. C. Hsieh, D. Y. Lin, and W. Wu, “Precipitation behavior of σ phase in 19Cr–9Ni–2Mn and 18Cr–0.75Si stainless steels hot-rolled at 800oC with various reduction ratios”, Materials Science and Engineering A, Vol. 467, pp. 181-189, 2007. [157] C. C. Hsieh, D. Y. Lin, and W. Wu, “Precipitation behavior of sigma phase in 304 and 430 stainless steels as hot-rolled at 800oC,” APS March Meeting 2007, March 5-9, 2007, Colorado Convention Center, Denver, Colorado, U.S.A. [158] T. P. S. Gill, M. Vijaylakshmi, P. Rodriguez, and K.A. Padmanabhan, “On the microstructure property correlation of thermal aged type 316 L stainless steel weld metal,” Metallurgical and Materials Transactions A, Vol. 20, No. 6, pp. 1115-1124, 1989. [159] C. C. Hsieh, D. Y. Lin, and W. Wu, “Dispersion Strengthening of σ phase in ferritic and austenitic stainless steels after hot rolled,” MS&T’2007, September 16-20, 2007, COBO Center, Detroit, Michigan, U.S.A. [160] C. C. Hsieh, D. Y. Lin, and W. Wu, “Dispersion strengthening behavior of σ phase in 304 modified stainless steels during 1073K hot rolling,” Metals and Materials International, Vol. 13, No. 5, pp. 411-416, 2007. [161] J. A. Brooks and A. W. Thompson, “Microstructural development and solidification cracking susceptibility of austenitic stainless steel welds,” International Materials Reviews, Vol. 36, No. 1, pp. 16-44, 1991. [162] H. Mizukami, T. Suzuki, T. Umeda, and W. Kurz, “Initial stage of rapid solidification of 18-8 stainless steel,” Materials Science and Engineering A, Vol. 173, No. 1-2, pp. 361-364, 1993. [163] M. Vasudevan, A. K. Bhaduri, B. Raj, and K. Rao, “Artificial neural network modelling of solidification mode in austenitic stainless steel welds,” Materials Science and Technology, Vol. 23, No. 4, pp. 451-459, 2007. [164] V. Shankar, T. P. S. Gill, S. L. Mannan, and S. Sundaresan, “Solidification cracking in austenitic stainless steel welds,” Sadhana Academy Proceedings in Engineering Sciences, Vol. 28, No. 3-4, pp. 359-382, 2003. [165] M. Vasudevan, A. K. Bhaduri, and B. Raj, “Modeling the solidification mode in austenitic stainless steel welds,” Welding in the World, Vol. 49, No. 9, pp. 380-387, 2005. [166] H. Inoue, T. Koseki, S. Okita, and M. Fuji, “Solidification and transformation behaviour of Cr-Ni stainless steel weld metals with ferritic single-phase solidification mode: Study of solidification and transformation of Cr-Ni stainless steel weld metals,” Welding Research Abroad, Vol. 44, No. 5, pp. 19-33, 1998. [167] A. M. Ritter, M. F. Henry, and W. F. Savage, “High temperature phase chemistries and solidification mode prediction in Nitrogen-Strengthened austenitic stainless steels,” Metallurgical Transactions A, Vol. 15, No. 7, pp. 1339-1351, 1984. [168] J. C. Ma, Y. S. Yang, W. H. Tong, Y. Fang, Y Yu, and Z. Q. Hu, “Microstructural evolution in AISI 304 stainless steel during directional solidification and subsequent solid-state transformation,” Materials Science and Engineering A, Vol. 444, No. 1-2, pp. 64-68, 2007. [169] M. Ueda, “Development of stainless steel by progress of solidification process,” Metallurgia Italiana, Vol. 87, No.1, pp. 19-27, 1995. [170] M. L. N. Melo, C. L. Penhalber, N.
摘要: 本研究目的在探討於不同銲接道次下,多道304及430異種不銹鋼銲接系統中不同銲接區域之樹枝狀晶、δ-肥粒鐵、γ-沃斯田鐵相、α’-麻田散鐵及σ相的顯微組織變化。 在304不銹鋼多道銲接系統方面,研究結果發現第一道次熔融區(304/430)具有塊狀δ-肥粒鐵與γ-沃斯田鐵雙相結構,這是由於γ→δ塊狀相變化所導致。當γ→δ塊狀相變化發生時,會使γ-沃斯田鐵相與δ-肥粒鐵相具有接近的化學成分,同時發現塊狀δ-肥粒鐵的析出也會造成第一道次熔融區硬度值提升。 然而,於第二道次熔融區(304-1)發現σ相析出,此乃因為δ→σ相變化所造成。而第三道次熔融區(304-2)之σ相析出則是以δ→σ+γ2共析分解而成。上述的三種相變化的發生與Cr、Si、Ni元素的擴散息息相關。於機械性質方面,多道熔融區的硬度值均比304與430不銹鋼的基地要高,這是由於γ→δ塊狀相變化、δ→σ相變化、δ→σ+γ2相變化所引起。另一方面,於重疊熱影響區的晶粒細化是由於二次結晶所造成。 經由DSC示差掃瞄熱分析可偵測到σ相的析出的峰值溫度為678℃、861℃、893℃、934℃。顯示當溫度在934℃,Cr在δ-肥粒鐵中有最大的擴散係數。於678℃、861℃、893℃、934℃等溫度下,擴散係數大小依序為: DδCr > DδNi > DγCr > DγNi,且隨著溫度的提高,此趨勢更為顯著。 第三道次熔融區有較明顯的共析分解,是因為DδCr、DδNi的值較高。在不同的峰值溫度下(678℃、861℃、893℃、934℃),擴散活化能QdγCr、QdγNi大於QdδCr、QdδNi,故Cr、Ni在γ-沃斯田鐵中較難擴散,進而提升Cr、Ni元素在δ-肥粒鐵的擴散機會。再者,更發現當擴散活化能的條件為[QdγCr≒QdγNi]>[QdδCr≒QdδNi],會產生δ→σ+γ2的共析分解相變化。 由原子跳動頻率的計算結果,顯示ΓδCr=ΓδNi,表示Cr、Ni的溶質原子在δ-肥粒鐵中,於678℃、861℃、893℃、934℃的δ→σ+γ2共析分解之溫度範圍內具有較高的原子跳動頻率。 本研究使用Vitek擴散模式及一般擴散方程式作為預測σ相析出的方法,由於Vitek擴散模式並無法預測Si在δ-肥粒鐵、γ-沃斯田鐵中的擴散係數,必須使用一般擴散方程式作為預測方法。經由Vitek擴散模式的計算顯示DδSi > DγSi,表示Si在δ-肥粒鐵有比γ-沃斯田鐵高的擴散速率,此即為Si可以促進δ→σ+γ2相變化的原因。 經由Thermo-Calc熱力學軟體,針對本研究第三道熔融區之σ相成分(56%Fe-35%Cr-6%Si)進行模擬,模擬溫度區間為500℃~1300℃,以Si元素為變數,模擬結果顯示於DSC熱分析的峰值溫度區間確實會發生σ相析出及擴大σ相之相區。 於第三道次熔融區(430-2)觀察到的α''-麻田散鐵的型態可分為α''-條狀麻田散鐵(Lath α''-martensite)及板狀α''-麻田散鐵(Plate α''-martensite)兩種。由XRD結晶繞射分析結果,顯示於第三道次熔融區沒有偵測到沃斯田鐵相的峰值,故於第三道次熔融區發生100%的γ→α''相變化,因而有較多的α''-麻田散鐵相形成在δ-肥粒鐵的晶粒內部。 關鍵詞 : 異種不銹鋼、多道銲接、熔融區、重疊熱影響區、相變化、擴散係數、原子跳動頻率、Vitek擴散模式、一般擴散方程式。
URI: http://hdl.handle.net/11455/10897
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.