Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10905
標題: 微波輔助鐵白金磁性奈米粒子之合成及其物理性質與熱治療之應用研究
Microwave-assisted synthesis and characterization of FePt magnetic nanoparticles for hyperthermia application
作者: 蔡明叡
Tsai, Ming-Jui
關鍵字: microwave
微波
FePt
magnetic
nanoparticles
hyperthermia
鐵白金
磁性奈米粒子
熱治療
出版社: 材料科學與工程學系所
引用: 1. Frey, N., Peng, S., Cheng, K., and Sun, S. (2009) Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage, Chemical Society Reviews 38, 2532. 2. Sun, S. (2006) Recent advances in chemical synthesis, self-assembly, and applications of FePt nanoparticles, Advanced Materials 18, 393-404. 3. Pankhurst, Q., Connolly, J., Jones, S., and Dobson, J. (2003) Applications of magnetic nanoparticles in biomedicine, Journal of Physics-London-D Applied Physics 36, 167-181. 4. Molday, R., and Mackenzie, D. (1982) Immunospecific ferromagnetic iron-dextran reagents for the labeling and magnetic separation of cells, Journal of immunological methods 52, 353-367. 5. Widder, K., Senyei, A., and Scarpelli, D. (1978) Magnetic microspheres: a model system for site specific drug delivery in vivo, Experimental Biology and Medicine 158, 141. 6. Hughes, C., Galea-Lauri, J., Farzaneh, F., and Darling, D. (2001) Streptavidin paramagnetic particles provide a choice of three affinity-based capture and magnetic concentration strategies for retroviral vectors, Molecular Therapy 3, 623-630. 7. Wust, P., Hildebrandt, B., Sreenivasa, G., Rau, B., Gellermann, J., Riess, H., Felix, R., and Schlag, P. (2002) Hyperthermia in combined treatment of cancer, The lancet oncology 3, 487-497. 8. Leach, M. (1988) Spatially Localized Nuclear Magnetic Resonance, The Physics of medical imaging, 389. 9. Maenosono, S., and Saita, S. (2006) Theoretical assessment of FePt nanoparticles as heating elements for magnetic hyperthermia, IEEE Transactions on Magnetics 42, 1638-1642. 10. Ito, A., Shinkai, M., Honda, H., and Kobayashi, T. (2005) Medical application of functionalized magnetic nanoparticles, Journal of bioscience and bioengineering 100, 1-11. 11. Jun, Y., Seo, J., and Cheon, J. (2008) Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences, Acc. Chem. Res 41, 179-189. 12. Cheon, J., Kang, N., Lee, S., Lee, J., Yoon, J., and Oh, S. (2004) Shape evolution of single-crystalline iron oxide nanocrystals, Journal of the American Chemical Society 126, 1950-1951. 13. Rakshit, R., and Budhani, R. (2006) Magnetic relaxation and superparamagnetism of non-interacting disordered CoPt nanoparticles, Journal of Physics D: Applied Physics 39, 1743. 14. Lang, X., Zheng, W., and Jiang, Q. (2006) Size and interface effects on ferromagnetic and antiferromagnetic transition temperatures, Physical Review B 73, 224444. 15. Jiles, D. (1998) Introduction to magnetism and magnetic materials, CRC. 16. Xu, C., and Sun, S. (2007) Monodisperse magnetic nanoparticles for biomedical applications, Polymer International 56, 821-826. 17. Dobson, J. (2006) Gene therapy progress and prospects: magnetic nanoparticle-based gene delivery, Gene therapy 13, 283-287. 18. Sonvico, F., Mornet, S., Vasseur, S., Dubernet, C., Jaillard, D., Degrouard, J., Hoebeke, J., Duguet, E., Colombo, P., and Couvreur, P. (2005) Folate-conjugated iron oxide nanoparticles for solid tumor targeting as potential specific magnetic hyperthermia mediators: synthesis, physicochemical characterization, and in vitro experiments, Bioconjugate Chem 16, 1181-1188. 19. Dobson, J. (2006) Magnetic nanoparticles for drug delivery, Drug development research 67, 55-60. 20. Landmark, K., DiMaggio, S., Ward, J., Kelly, C., Vogt, S., Hong, S., Kotlyar, A., Myc, A., Thomas, T., and Penner-Hahn, J. (2008) Synthesis, characterization, and in vitro testing of superparamagnetic iron oxide nanoparticles targeted using folic acid-conjugated dendrimers, ACS nano 2, 773-783. 21. Song, C. (1984) Effect of local hyperthermia on blood flow and microenvironment: a review, Cancer Research 44, 4721s. 22. Song, C. (1978) Effect of hyperthermia on vascular functions of normal tissues and experimental tumors; brief communication, Journal of the National Cancer Institute 60, 711. 23. Gilchrist, R., Medal, R., Shorey, W., Hanselman, R., Parrott, J., and Taylor, C. (1957) Selective inductive heating of lymph nodes, Annals of Surgery 146, 596. 24. Yu, M., Jeong, Y., Park, J., Park, S., Kim, J., Min, J., Kim, K., and Jon, S. (2008) Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo, Angew. Chem. Int. Ed 47, 5362-5365. 25. Hofer, K., Choppin, D., and Hofer, M. (2006) Effect of hyperthermia on the radiosensitivity of normal and malignant cells in mice, Cancer 38, 279-287. 26. Kong, G., Anyarambhatla, G., Petros, W., Braun, R., Colvin, O., Needham, D., and Dewhirst, M. (2000) Efficacy of liposomes and hyperthermia in a human tumor xenograft model: importance of triggered drug release, Cancer Research 60, 6950. 27. Streffer, C. (1987) Hyperthermia and the therapy of malignant tumors, Springer-Verlag Berlin, Heidelberg. 28. Mornet, S., Vasseur, S., Grasset, F., and Duguet, E. (2004) Magnetic nanoparticle design for medical diagnosis and therapy, Journal of Materials Chemistry 14, 2161-2175. 29. Nikiforov, V. (2007) Magnetic induction hyperthermia, Russian Physics Journal 50, 913-924. 30. Ang, K., Venkatraman, S., and Ramanujan, R. (2007) Magnetic PNIPA hydrogels for hyperthermia applications in cancer therapy, Materials Science and Engineering: C 27, 347-351. 31. Derfus, A., von Maltzahn, G., Harris, T., Duza, T., Vecchio, K., Ruoslahti, E., and Bhatia, S. (2007) Remotely triggered release from magnetic nanoparticles, Advanced Materials 19, 3932¡V3936. 32. Gutfleisch, O., Lyubina, J., Muller, K., and Schultz, L. (2005) FePt hard magnets, Advanced Engineering Materials 7, 208-212. 33. Eriksson, T., Bergqvist, L., Burkert, T., Felton, S., Tellgren, R., Nordblad, P., Eriksson, O., and Andersson, Y. (2005) Cycloidal magnetic order in the compound IrMnSi, Physical Review B 71, 174420. 34. Brown, G., Kraczek, B., Janotti, A., Schulthess, T., Stocks, G., and Johnson, D. (2003) Competition between ferromagnetism and antiferromagnetism in FePt, Physical Review B 68, 52405. 35. Miyazaki, T., Okamoto, S., Kitakami, O., and Shimada, Y. (2003) Fabrication of two-dimensional assembly of L10FePt nanoparticles, Journal of Applied Physics 93, 7759-7761. 36. Staunton, J., Szunyogh, L., Buruzs, A., Gyorffy, B., Ostanin, S., and Udvardi, L. (2006) Temperature dependence of magnetic anisotropy: An ab initio approach, Physical Review B 74, 144411. 37. Sun, S., Fullerton, E., Weller, D., and Murray, C. (2001) Compositionally controlled FePt nanoparticle materials, IEEE Transactions on Magnetics 37, 1239-1243. 38. Iwaki, T., Kakihara, Y., Toda, T., Abdullah, M., and Okuyama, K. (2003) Preparation of high coercivity magnetic FePt nanoparticles by liquid process, Journal of Applied Physics 94, 6807. 39. Harpeness, R., and Gedanken, A. (2005) The microwave-assisted polyol synthesis of nanosized hard magnetic material, FePt, Journal of Materials Chemistry 15, 698-702. 40. Nguyen, H., Howard, L., Giblin, S., Tanner, B., Terry, I., Hughes, A., Ross, I., Serres, A., Burckstummer, H., and Evans, J. (2005) Synthesis of monodispersed fcc and fct FePt/FePd nanoparticles by microwave irradiation, Journal of Materials Chemistry 15, 5136-5143. 41. Larhed, M., and Hallberg, A. (1996) Microwave-promoted palladium-catalyzed coupling reactions, J. Org. Chem 61, 9582-9584. 42. Wu, C., and Bein, T. (1996) Microwave synthesis of molecular sieve MCM-41, Chemical Communications 1996, 925-926. 43. Landry, C., and Barron, A. (1993) Synthesis of polycrystalline chalcopyrite semiconductors by microwave irradiation, Science 260, 1653. 44. Patel, K., Kapoor, S., Dave, D., and Mukherjee, T. (2005) Synthesis of nanosized silver colloids by microwave dielectric heating, Journal of Chemical Sciences 117, 53-60. 45. Bensebaa, F., Patrito, N., Page, Y., L''Ecuyer, P., and Wang, D. (2004) Tunable platinum¡Vruthenium nanoparticle properties using microwave synthesis, Journal of Materials Chemistry 14, 3378-3384. 46. Park, J., Kang, N., Jun, Y., Oh, S., Ri, H., and Cheon, J. (1999) Superlattice and magnetism directed by the size and shape of nanocrystals, Langmuir 15, 3790. 47. Sobol, H., and Tomiyasu, K. (2002) Milestones of microwaves, IEEE transactions on microwave theory and techniques 50, 594-611. 48. Osepchuk, J. (2002) Microwave power applications, IEEE transactions on microwave theory and techniques 50, 975-985. 49. DC, N. M. A. B. W. (1994) Microwave Processing of Materials. 50. Clark, D., and Sutton, W. (1996) Microwave processing of materials, Annual Review of Materials Science 26, 299-331. 51. Ishii, T. K. (1995) Handbook of Microwave Technology Vol. 2 Applications Academic Press. London. 52. Cheung, W. S. (1985) Introduction, In Microwaves Made Simple: Principles and Applications, pp 1-5, Artech House, Dedham, Massachusetts. 53. Scott, A. W. (1993) Understanding Microwaves, John Wiley &Sons, Inc. 54. Van der Zee, J. (2002) Heating the patient: a promising approach?, Annals of oncology 13, 1173. 55. Manoj Gupta and Wong Wai Leong, E. (2007) Microwaves and Metals, John and Wiley & Sons (Asia) Pte Ltd. 56. Schiffmann, R. F. (1997) Principles of Industrial Microwave and RF Heating In Microwaves: Theory and Application in Materials Processing IV (Clark, D. E. S. W. H. a. L. D. A., Ed.), pp 41-60, The American Ceramic Society, Westerville, Ohio. 57. Osepchuk, J. (1984) A history of microwave heating applications, IEEE transactions on microwave theory and techniques 32, 1200-1224. 58. Guy, A. (1984) History of biological effects and medical applications of microwave energy, IEEE transactions on microwave theory and techniques 32, 1182-1200. 59. Setin, D. F. (1994) Microwave Processing of Materials, In Microwave Processing of Materials, National Materials Advisory Broad. 60. Thostenson, E., and Chou, T. (1999) Microwave processing: fundamentals and applications, Composites Part A: Applied Science and Manufacturing 30, 1055-1071. 61. Yu, B., Rybakov, K., and Semenov, V. (2001) High temperature microwave processing of materials, J. Phys. D: Appl. Phys 34, R55-R75.
摘要: 鐵白金為現今磁性材料的熱門研究物系之一,此物系不僅在磁紀錄儲存媒體的研發上被廣泛的研究,近年來也因為鐵白金具有高居里溫度、高飽和磁化量及高化學安定性等特性被探討及應用在生物醫學治療等生醫領域。 本實驗為使用不同於傳統加熱方式(加熱包);以微波做為加熱源來合成非序化相鐵白金磁性奈米粒子,接著在鐵白金磁性奈米粒子外包覆緻密氧化矽殼層以增進其水溶性,進而增加在生醫方面的應用。 在包覆緻密氧化矽殼層前後進行快速升溫退火(rapid thermal annealing, RTA)處理,探討其性質變化之差異。在包覆緻密氧化矽殼層後,分別在退火前後進行高周波加熱(hyperthermia)的研究及其對細胞之生物毒性之探討。
Iron Platinum (FePt) is one of popular magnetic materials in recent years. FePt not only been studied and used in magnetic data storage device but also investigated its potential application in biomedical field because its high Curie temperature, high saturation magnetization and high chemical stability. In this experiment, we use microwave as a new heating source which different from convential method during the process of synthesis disordered fcc phase FePt magnetic nanoparticles. After FePt nanoparticles has synthesized, SiO2 shell coated on FePt nanoparticles intent to improve their water-soluble ability. We will discuss the difference between annealing FePt nanoparticles by rapid thermal anneal (RTA) befor/after coated SiO2 shell and the difference between FePt coated SiO2 shell nanoparticles used in hyperthermia before/after annealed by rapid thermal anneal (RTA). We also use MTT assay to investigate its cytotoxicity.
URI: http://hdl.handle.net/11455/10905
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.