Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10916
標題: 垂直磁化Fe/FePt交換耦合膜及(Ag2Te/FePt)n顆粒膜之磁性質與微結構研究
The Magnetic properties and microstructure of exchange-coupled Fe/FePt bilayer and particulate (Ag2Te/FePt)n film with perpendicular magnetization
作者: 曾信得
Tseng, Hsi-Te
關鍵字: FePt
垂直磁化
Ag2Te
perpendicular magnetization
exchange-coupled
交換耦合
顆粒膜
磁性質
耦合薄膜
出版社: 材料科學與工程學系所
引用: [1] 許仁華、孫安正,奈米儲存發展與前景,物理雙月刊(三十卷二期) 2008年四月,152-159。 [2] D. Weller and A. Moser, IEEE Trans. Magn., Vol.35, 4423 (1999). [3] Eric E. Fullerton, D. T. Margulies, M. E. Schabes, M. carey, B. Gurney, A. Moser, M. Best, G. Zeltzer, K. Rubin, and H. Rosen, Appl. Phys. Lett., Vol.77, 3806 (2000). [4] 凌威科技網站:http://jie0503.blog.ithome.com.tw/resource/1762/6813#album [5] 引用圖片來源網址:http://vista.zol.com.cn/56/569818.html. [6] http://www.hitachigst.com/hdd/research/storage/pm/index.html, Hitachi Global Storage Technologies. [7] http://www-03.ibm.com/ibm/history/exhibits/storage/storage_350.html, on loan from IBM. [8] Peter A. Grünber, Rev. Mod. Phys., Vol. 80, No. 4,1531(2008) [9] 引用圖片來源網址: http://library.thinkquest.org/4116/Science/moore%27s1.htm [10] Soshin Chikazumi著, 張煦, 李學養合譯, 磁性物理學。. [11] http://www.hgst.com/hdd/research/images/pr%20images/perpendicular4.gif, Hitachi Global Storage Technologies. [12] Eric E. Fullerton, D. T. Margulies, M. E. Schabes, M. carey, B. Gurney, A. Moser, M. Best, G. Zeltzer, K. Rubin, and H. Rosen, Appl. Phys. Lett., Vol.77,3806 (2000). [13] E. N. Abarra, A. Inomata, H. Sato, I. Okamoto, and Y. Mizoshita, Appl. Phys. Lett., Vol.77, 2581 (2000). [14] Shun-ichi Iwasaki and Yoshihisa Nakamura, IEEE Trans. Magn., Vol. MAG-13, 1272 (1977). [15] Dieter Weller, Andreas Moser, Liesl Folks, Margaret E. Best, Wen Lee, Mike F. Toney, M. Schwickert, Jan-Ulrich Thiele, and Mary F. Doerner, IEEE Trans. Magn., Vol.36, 10 (2000). [16] 許樹恩,吳泰伯合著,X光繞射原理與材料結構分析,第十三章,2006年。 [17] http://www.hitachigst.com/portal/site/jp/products/travelstar/, Hitachi Global Storage Technologies. [18] Thaddeus B. Massalski, “Binary Alloy Phase Diagrams”, V.2, ASM International. second printing (1990). [19] JCPDS card, Card No.29-0718. [20] 許樹恩,吳泰伯合著,X光繞射原理與材料結構分析,第十三章,2006年。 [21] JCPDS card, Card No.02-1167. [22] Dieter Weller, Andreas Moser, Liesl Folks, Margaret E. Best, Wen Lee, Mike F. Toney, M. Schwickert, Jan-Ulrich Thiele, and Mary F. Doerner, IEEE Trans. Magn., Vol. 36, 10 (2000). [23] 許樹恩,吳泰伯合著,X光繞射原理與材料結構分析,第十三章,2006年。 [24] JCPDS card, Card No.03-0921. [25] Thaddeus B. Massalski, “Binary Alloy Phase Diagrams”, V.1, American Socieity For Metals. second printing (1987). [26] Thaddeus B. Massalski, “Binary Alloy Phase Diagrams”, V.1, American Socieity For Metals. second printing (1987). [27] S.-C. Chen , P.C. Kuo, A.C. Sun, C.T. Lie, W.C. Hsu, Materials Science and Engineering B88, 91 (2002). [28] Xiao-Hong Xu, Hai-Shun Wu, Fang Wang, Xiao-Li Li, Thin Solid Films 472, 222 (2005). [29] C. L. Platt, K. W. Wierman, E. B. Svedberg, R. van de Veerdonk, J. K. Howard, A. G. Roy and D. E. Laughlin, J. Appl. Phys. ,Vol. 92, 10 (2002). [30] C. Y. You, Y. K. Takahashi, and K. Hono, J. Appl. Phys. ,Vol.100, 056105 (2006). [31] Thaddeus B. Massalski, “Binary Alloy Phase Diagrams”, V.1, American Socieity For Metals. second printing (1987). [32] 引用圖片來源網址: http://webmineral.com/data/Hessite.shtml [33] JCPDS card, Card No.34-142,.http://webmineral.com/data/Hessite.shtml [34] 引用圖片來源網址:http://wikis.lib.ncsu.edu/index.php/Fluorite/Antifluorite [35] Takashi Sakuma and Shoji Saitoh, J. Phys. S. Jap. , Vol. 54, 3647(1985) [36] JCPDS card, Card No.15-0081. [37] B. D. Cullity, C. D. Graham, “Introduction to Magnetic Materials”,Secind Edition, 197~198 [38] B. D. Cullity, C. D. Graham, “Introduction to Magnetic Materials”,Secind Edition, 199 [39] B. D. Cullity, C. D. Graham, “Introduction to Magnetic Materials”,Secind Edition, 201 [40] B. D. Cullity, C. D. Graham, “Introduction to Magnetic Materials”,Secind Edition, 202 [41] B. D. Cullity, C. D. Graham, “Introduction to Magnetic Materials”,Secind Edition, 203 [42] B. D. Cullity, C. D. Graham, “Introduction to Magnetic Materials”,Secind Edition, 203 [43] B. D. Cullity, C. D. Graham, “Introduction to Magnetic Materials”,Secind Edition, 202 [44] B. D. Cullity, C. D. Graham, “Introduction to Magnetic Materials”,Secind Edition, 48. [45] B. D. Cullity, C. D. Graham, “Introduction to Magnetic Materials”,Secind Edition, 53. [46] E. C. Stoner, Phil. Mag. , Vol.36, 803 (1945). [47] J. A. Osborn, Phys. Rev. , Vol.67, 351 (1945). [48] Cullity Graham, “Introduction to Magnetic Materials”,Secind Edition, 53. [49] G. C. Hadjipanayais, J. Appl. Phys. , Vol. 63,965(1976) [50] B. D. Cullity, C. D. Graham, “Introduction to Magnetic Materials”,Secind Edition, 361 [51] E. P. Wohlfarth, J. Appl. Phys. ,Vol.29, 595(1958) [52] Eckart F. Kneller and Reinhard Hawig, IEEE Trans. Magn. , Vol. 27, 3588(1991). [53] W. F. Brown, Jr., Rev. Mod. Phys., vol. 17, 15(1945).. [54] A. Yu. Dobin and H. J. Richter, Appl. Phys. Lett., Vol.89, 062512 (2006). [55] F. J. Himpsel, J. E. Ortega, G. J. Mankey, and R. F. Willis, Adv. Phys. , Vol.47, 511(1998). [56] 引用圖片來源網址: http://www.kruss.de/en/theory/measurements/contact-angle/introduction.html. [57] Masato Watanabe, KSki Takanashi and Hiroyasu Fujimori, J. Magn. Magn. Mat., Vol.113,110 (1992) [58] M.R. Visokay, B.M. Lairson, B.M. Clemens and R. Sinclair, J. Magn. Magn. Mat., Vol.126,136 (1993) [59] S. Mitani, K. Takanashi, M. Sano, H. Fujimori, A. Osawa and H. Nakajima, J. Magn. Magn. Mat., Vol.148,163 (1995) [60] M. H. Hong and M. Watanabe, J. Appl. Phys. , Vol.84, 4403(1998). [61] T. Suzuki, Y. Endo, and Y. Shimada, J. Magn. Magn. Mat., Vol.193, 85 (1999) [62] T. Shima, K. Takanashi, Y. K. Takahashi, and K. Hono, Appl. Phys. Lett. , Vol.81, 1050 (2002). [63] T. Shima, T. Moriguchi, S. Mitani, and K. Takanashi, Appl. Phys. Lett. , Vol.80, 288 (2002). [64] M. L. Yan, N. Powers, and D. J. Sellmyer, J. Appl. Phys. , Vol.93, 8292 (2003). [65] Y. Shao, M. L. Yan, and D. J. Sellmyer, J. Appl. Phys. , Vol.93, 8152 (2003) [66] D. N. Lambeth, Y. C. Feng, and D. E. Laughlin ,J. Appl. Phys. ,Vol. 76, 7311 (1994). [67] J. S. Chen, B. C. Lim, and G. M. Chow, J. Magn. Magn. Mater. ,Vol.303, 309-317(2005). [68] J. Wan, Y. Huang, Y. Zhang, M. J. Bonder, G. C. Hadjipanayis, and D. Weller, J. Appl. Phys. Vol.,97, 10J121 (2005). [69] Jae-Song Kim and Yang-Mo Koo, J. Appl. Phys., Vol.100, 093909 (2006). [70] Jae-Song Kim, Yang-Mo Koo, and Byeong-Joo Lee, J. Appl. Phys., Vol.99, 053906 (2006). [71] G. R. Trichy, D. Chakraborti, J. Narayan, and J. T. Prater, J. Phys. D: Appl. Phys., Vol.40, 7273 (2007). [72] Yu-Nu Hsu, Sangki Jeong, David N. Lambeth, and David E. Laughlin, IEEE Trans. Magn. Vol.36, 5 (2000). [73] T. Yang, E. Ahmad, and T. Suzuki, J. Appl. Phys., Vol.91, 6860 (2002). [74] Zhengang Zhang, Kyongha Kang, and Takao Suzuki, J. Appl. Phys. Vol.93, 7163 (2003). [75] Y. Shao, M. L. Yan, and D. J. Sellmyer, J. Appl. Phys.,Vol. 93, 8152 (2003). [76] Z. L. Zhao, J. S. Chen, J. Ding, K. Inaba, J. P. Wang, J. Magn. Magn. Mater. , Vol.282 , 105-108(2004). [77] Y. Z. Zhou, J. S. Chen, G. M. Chow, and J. P. Wang, J. Appl. Phys., Vol.95, 7495 (2004). [78] C. Y. You, Y. K. Takahashi, and K. Hono, J. Appl. Phys.,Vol.100, 056105 (2006). [79] Z. L. Zhao, J. S. Chen, J. Ding, J. B. Yi, B. H. Liu, and J. P. Wang, Appl. Phys. Lett.,Vol. 88, 052503 (2006). [80] J. K. Mei, D. H. Wei, and Y. D. Yao, Phys. Stat. Sol. ,Vol.204, No.12, 4153-4157 (2007). [81] C. P. Luo and D. J. Sellmyer, Appl. Phys. Lett. , Vol.75, 3162 (1999). [82] Chih-Ming Kuo and P. C. Kuo, J. Appl. Phys.,Vol.87,419 (2000). [83] C. P. Luo, S. H. Liou, L. Gao, Y. Liu, and D. J. Sellmyer, Appl. Phys. Lett. , Vol.77, 2225 (2000). [84] C. L. Platta, K. W. Wierman, J. K. Howard, A. G. Roy, and D. E. Laughlin, J. Magn. Magn. Mater.,Vol. 260 ,487(2003). [85] Y.F. Ding, J.S. Chen, and E. Liu, Thin Solid Films ,Vol.474,141-145 (2005). [86] Satoshi Okamoto, Osamu Kitakami, Mater. Trans. ,Vol.47, 43-46(2006). [87] T. O. Seki, Y. K. Takahashi, and K. Hono, J. Appl. Phys. ,Vol.103,023910 (2008). [88] Y. F. Ding, J. S. Chen, B. C. Lim, J. F. Hu, B. Liu, and G. Ju, Appl. Phys. Lett. , Vol.93, 032506 (2008). [89] J. S. Chen, B. C. Lim, J. F. Hu, Y. F. Ding, G. M. Chow, and G. Ju, J. Phys. D: Appl. Phys., Vol.41,205001 (2008). [90] Yun-Chung Wu, Liang-Wei Wang, and Chih-Huang Lai, Appl. Phys. Lett. , Vol.93, 242501 (2008). [91] H. Zhou, H. J. Richter, and Er. Girt, Appl. Phys. Lett. ,Vol. 80, 2529 (2002). [92] H. J. Richter and A. Yu. Dobin, J. Appl. Phys.,Vol.99,08Q905(2006). [93] A. Yu. Dobin and H. J. Richter, Appl. Phys. Lett. , Vol.89, 062512 (2006). [94] F. Casoli, F. Albertini, L. Nasi, S. Fabbrici, R. Cabassi, F. Bolzoni, and C. Bocchi, Appl. Phys. Lett. , Vol.92, 142506 (2008). [95] Tie-Jun Zhou,Boon Chow Lim, and Bo Liu, Appl. Phys. Lett. , Vol.94, 152505 (2009). [96] Fang Wang, Xiaohong Xu, Yan Liang, Jing Zhang, and Haishun Wu, Appl. Phys. Lett. , Vol.95, 022516 (2009). [97] Alfred Grill,”Cold Plasma in Materials Fabrication”, 26. [98] Alfred Grill,”Cold Plasma in Materials Fabrication”, 29. [99] Alfred Grill,”Cold Plasma in Materials Fabrication”, 31-39. [100] 林怡君,蔡佳霖,鉻鉑底層對鐵鉑薄膜磁性與微結構之研究,國立中興大學碩士論文,中華民國九十六年七月。 [101] 田民波,顏怡文,”薄膜技術與薄膜材料”,五南圖書,第十一章,2007年。 [102] 引用圖片來源址:http://www.el.utwente.nl/tdm/istg/research/vsm/vsm.htm [103] 吳南均,汪建民,”材料分析”,中國材料科學學會,76,1998年 [104] David B. Williams and C. Barry Carter,”Transmission Electron Microscopy”,150. [105] CAREL J. VAN OSS, MANOJ K. CHAUDHURY,and ROBERT J. GOOD,Chem. Rev. ,Vol.88, 927-941(1988) [106] 引用圖片來源網址: http://www.mse.nchu.edu.tw/p1.asp?uno=7 [107] 引用表格來源網址:http://www.sindatek.com/Bmyl.htm [108] 潘扶民,汪建民,”材料分析”,中國材料科學學會,第十三章,1998年。
摘要: 本研究將膜層結構為[FePt(1 nm)/Ag2Te(t)]10 (改變厚度t為0.1-0.3 nm)的多層膜以交互沉積方式濺鍍於玻璃基板,接著以快速升溫製程進行退火。經過快速升溫製程之熱處理後,FePt層與Ag2Te層間之界面會因擴散而混和,並且使膜層形成顆粒狀薄膜。隨著Ag2Te插入層厚度由0.1 nm提升至0.3 nm,L10序化完成之FePt之平均晶粒尺寸會由23 nm降至14 nm。而在磁性質上,顆粒狀 (FePt/Ag2Te)10薄膜表現出垂直磁化之特性。Ag/FePt/Ag膜層和(FePt/Ag2Te)10同樣表現出垂直磁化之特性,但膜層之c軸方向排列較為一致。由實驗發現Ag覆蓋(頂)層和Ag種晶(底)層的加入會降低FePt的序化溫度,但在快速升溫製程進行退火時會促進FePt的晶粒成長。故由研究結果發現,薄膜中Ag2Te相會使FePt晶粒的成長會受到限制並分隔FePt之晶粒,但FePt膜層若插入Ag覆蓋(頂)層和Ag種晶(底)層,薄膜之晶粒卻會改變為連續。 將垂直磁化之Fe(軟磁)/FePt(硬磁)複合雙層膜製備於玻璃基板上,而Fe/FePt膜層經退火後可使原本Fe/FePt輪廓鮮明的界面改變為Fe/(Fe-rich FePt)/FePt之漸層式界面。退火後由於奈米尺度的軟磁/硬磁層之界面耦合,造成薄膜表現為硬磁特性;單一磁翻轉場之磁化反轉機制,則可由理論的two-spin模型來解釋。當Fe/FePt複合雙層膜退火溫度提升,尤其在600-700 oC可明顯看出垂直膜面量測之矯頑磁力提升,並伴隨殘餘磁化量的持續下降,可由退火溫度提升造成漸層式界面之磁晶異向能提升作為解釋。由研究結果可證實(軟/硬磁)複合式(磁)交換耦合薄膜之矯頑磁力可由熱處理製程調適。
A [FePt (1 nm)/Ag2Te(t)]10 (thickness t = 0.1-0.3 nm) multilayer was deposited alternately on glass substrate and subsequently annealed by a rapid thermal process (RTP). After the RTP, the interface between FePt and Ag2Te was intermixed, forming particulate films. The L10 FePt grain size decreases from 23 nm to 14 nm as t of the Ag2Te intermediate layer increases from 0.1 to 0.3 nm. The (FePt/Ag2Te)10 particulate film shows perpendicular magnetization. Compared to (FePt/Ag2Te)10, the Ag/FePt/Ag trilayer also shows perpendicular magnetization with less c-axis dispersion. The Ag capping and seed layers reduce the ordering temperature of FePt but facilitate its grain growth during RTP. As a result, the FePt grains are refined and well-separated by the Ag2Te phase, but change to a continuous film after inserting Ag capping and seed layers. A soft/hard Fe/FePt bilayer with perpendicular magnetization was prepared on a glass substrate. Annealed Fe/FePt film allowed modification of the Fe/FePt sharp interface to Fe/(Fe-rich FePt)/FePt graded interface with rigid magnetization due to the nanoscale soft/hard interface coupling. The magnetization was reversed at a single switching field and interpreted by the two-spin model. When the annealed temperature of the Fe/FePt film increased, the reamnence magnetization decreased continuously but the out-of-plane coercivity increased obviously at 600-700oC which was interpreted by the graded magnetic anisotropy. The coercivity can be tuning in the exchange coupled composite film.
URI: http://hdl.handle.net/11455/10916
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.