Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10941
標題: 前驅物植入方式合成無機材質空心微球之機構研究
Mechanisms for Synthesis of Inorganic Hollow Particles by Precursor Implantation
作者: 陳國書
Chen, Guo-Shu
關鍵字: ionic-potential
離子勢
mechanism of implantation
hollow particles
植入機構
空心微球
出版社: 材料科學與工程學系所
引用: [1] Wu, Z. C. Yu, K. Zhang, S. D. Xie, Y., “Hematite hollow spheres with a mesoporous shell: Controlled synthesis and applications in gas sensor and lithium ion batteries,” J. Phys. Chem. C, 112(30): p. 11307-11313, 2008. [2] Hu, C. Q., Z. H. Gao, and X. R. Yang, “Hematite hollow spheres with excellent catalytic performance for removal of carbon monoxide,” Chem. Lett., 35(11): p. 1288-1289, 2006. [3] Baker, I. Zeng, Q. Li, W. D. Sullivan, C. R., “Heat deposition in iron oxide and iron nanoparticles for localized hyperthermia, ” J. Appl. Phys., 99(8): p. -,2006. [4] Tartaj, P. Morales, M. D. Veintemillas-Verdaguer, S. Gonzalez-Carreno, T. Serna, C. J., “The preparation of magnetic nanoparticles for applications in biomedicine,” J. Phys. D-Appl. Phys., 36(13): p. R182-R197, 2003. [5] Caruso, F., “Nanoengineering of particle surfaces,” Adv. Mater., “13(1): p. 11-+,2001. [6] 郭旻鑫, “前驅物植入方式合成中空ZnO暨中空Pt-Fe2O3複合殼層微球之研究, ”國立中興大學碩士論文, 2009. [7] 吳信霖, “以植入法合成氧化鐵中空微球與藥物包覆之研究,” 國立中興大學碩士論文, 2009. [8] 李維特, “以植入法合成單一分散中空Al2O3暨Pt-Al2O3微球之研究,” 國立中興大學碩士論文, 2009. [9] 王彥文, “以植入前驅物於膠體模板方式合成單一分散中空氧化鋁暨其他無機物微球之研究,” 國立中興大學碩士論文, 2008. [10] Lou, X. W., L. A. Archer, and Z.C. Yang, “Hollow Micro-/Nanostructures: Synthesis and Applications,” Adv. Mater., 20(21): p. 3987-4019,2008. [11] Kim, T. H., K. H. Lee, and Y. K. Kwon, “Monodisperse hollow titania nanospheres prepared using a cationic colloidal template, “ J. Colloid Interface Sci., 304(2): p. 370-377, 2006. [12] Imhof, A., “Preparation and characterization of titania-coated polystyrene spheres and hollow titania shells, “ Langmuir, 17(12): p. 3579-3585, 2001. [13] Kim, S. W. Kim, M. Lee, W. Y. Hyeon, T., “Fabrication of hollow palladium spheres and their successful application to the recyclable heterogeneous catalyst for Suzuki coupling reactions,” J. Am. Chem. Soc., 124(26): p. 7642-7643, 2002. [14] Sun, X. M. and Y. D. Li, “Ga2O3 and GaN semiconductor hollow spheres, ” Angew. Chem. Int. Ed., 43(29): p. 3827-3831, 2004. [15] Caruso, F., “Hollow capsule processing through colloidal templating and self-assembly,” Chem. Eur. J., 6(3): p. 413-419, 2000. [16] Caruso, F., R. A. Caruso, and H. Mohwald, “Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating,” Science, 282(5391): p. 1111-1114, 1998. [17] Wang, D. Y. and F. Caruso, “Polyelectrolyte-coated colloid spheres as templates for sol-gel reactions, ” Chem. Mate., 14(5): p. 1909-+, 2002. [18] Yoon, S. B. Sohn, K. Kim, J. Y. Shin, C. H. Yu, J. S. Hyeon, T.., “Fabrication of carbon capsules with hollow macroporous core/mesoporous shell structures,” Adv. Mater., 14(1): p. 19-21, 2002. [19] Ikeda, S. Tachi, K. Ng, Y. H. Ikoma, Y. Sakata, T. Mori, H. Harada, T. Matsumura, M., “Selective adsorption of glucose - Derived carbon precursor on amino-functionalized porous silica for fabrication of hollow carbon spheres with porous walls, “ Chem. Mate., 19(17): p. 4335-4340, 2007. [20] Fujiwara, M. Shiokawa, K. Tanaka, Y. Nakahara, Y., “Preparation and formation mechanism of silica microcapsules (hollow sphere) by water/oil/water interfacial reaction, “ Chem. Mater., 16(25): p. 5420-5426, 2004. [21] Du, J. Z. Chen, Y. M. Zhang, Y. H. Han, C. C. Fischer, K. Schmidt, M., “Organic/inorganic hybrid vesicles based on a reactive block copolymer,” J. Am. Chem. Soc., 125(48): p. 14710-14711, 2003. [22] Peng, Q., Y. J. Dong, and Y. D. Li, “ZnSe semiconductor hollow microspheres, ” Angew. Chem. Int. Ed., 42(26): p. 3027-3030, 2003. [23] Han, Y. S. Hadiko, G. Fuji, M. Takahashi, M., “A novel approach to synthesize hollow calcium carbonate particles,” Chem. Lett., 34(2): p. 152-153, 2005. [24] Zhang, G. Q. Yu, Q. X. Yao, Z. Li, X. G., “Large scale highly crystalline Bi2Te3 nanotubes through solution phase nanoscale Kirkendall effect fabrication, “ Chem. Commun., (17): p. 2317-2319, 2009. [25] Bansal, V., A. P. O''Mullane, and S.K. Bhargava, “Galvanic replacement mediated synthesis of hollow Pt nanocatalysts: Significance of residual Ag for the H-2 evolution reaction, “ Electrochem. Commun., 11(8): p. 1639-1642, 2009. [26] Tu, K. N. and U. Gosele, “Hollow nanostructures based on the Kirkendall effect: Design and stability considerations, “ Appl. Phys. Lett., 86(9): p. -, 2005. [27] Fan, H. J. Knez, M. Scholz, R. Hesse, D. Nielsch, K. Zacharias, M. Gosele, U., “Influence of surface diffusion on the formation of hollow nanostructures induced by the Kirkendall effect: The basic concept, “ Nano Letters, 7(4): p. 993-997, 2007. [28] Yin, Y. D. Erdonmez, C. K. Cabot, A. Hughes, S. Alivisatos, A. P., “Colloidal synthesis of hollow cobalt sulfide nanocrystals, “ Adv. Funct. Mater., 16(11): p. 1389-1399, 2006. [29] Wang, Y.L., L. Cai, and Y.N. Xia, “Monodisperse spherical colloids of Pb and their use as chemical templates to produce hollow particles, “ Adv. Mate., 17(4): p. 473-+, 2005. [30] Liang, H. P. Zhang, H. M. Hu, J. S. Guo, Y. G. Wan, L. J. Bai, C. L., “Pt hollow nanospheres: Facile synthesis and enhanced electrocatalysts, “ Angew. Chem. Int. Ed., 43(12): p. 1540-1543, 2004. [31] Cheng, W. Tang, K. B. Qi, Y. X. Sheng, J. Liu, Z. P., “One-step synthesis of superparamagnetic monodisperse porous Fe3O4 hollow and core-shell spheres, “ J. Mater. Chem., 20(9): p. 1799-1805, 2010. [32] Zeng, H.C., “Ostwald ripening: A synthetic approach for hollow nanomaterials, “ Curr. Nanosci., 3(2): p. 177-181, 2007. [33] Lou, X. W. Wang, Y. Yuan, C. L. Lee, J. Y. Archer, L. A., “Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity, “ Adv. Mater., 18(17): p. 2325-+, 2006. [34] Rosen, S.L., “Fundamental Principles of Polymeric Materials/Second Edition, “ Wiley-Interscience, 1993. [35] Platzer, N., “Progress in Polymer Engineering, “ Ind. Eng. Chem., 61: p. 10-30, 1969. [36] Ku, P.L., “Polystyrene and Styrene Copolymers I. Their Manufacture and Application, “ Adv. Polym. Tech., 8: p. 177-196, 1988. [37] A. A. Korotkov, C.P.M., V. N. Krasulina, L. A. Volkova, “Synthesis of Polymethyl Methacrylate with Regular Microstructure, “ Institute of High-Molecular Compounds of the U.S.S.R. Academy of Sciences, p. 506-515, 1959. [38] Bill Geroge, P.M., 譯:翁瑞裕, “Analytical Chemistry by Open Learning/紅外線光譜分析法, ”高立圖書有限公司, 2001. [39] Barr, T. L., “Esca Study of Termination of Passivation of Elemental Metals, “ J. Phys. Chem., 82(16): p. 1801-1810, 1978. [40] Qinhxia Liu, Zhenghe Xu, “Self-Assembled Monolayer Coatings on Nanosized Magnetic Particles Using 16-Mercaptohexadecnoic Acid, ”Langmuir, 11, 4617-4622, 1995. [41] James E. Huheey, E. A. K., Richard L. Keiter, “Inorganic Chemistry:Principles of Structure and Reactivity/4 Edition, “. [42] Fajans, K., “Struktur und Deformation der Elrktronenhullen in ihrer Bedeutung furdie chemischen und optischen Eigenschaften anorganischer Verbindungen, “ Naturwissenschaften, 11: p. 165-172, 1923. [43] Donald L. Pavia, G.M.L., “George S. Kriz, Introduction to apectroscopy: A Guide for Strudents of Organic Chemistry, “ 1997. [44] Bovey, F. A., “High Resolution NMR of Macromolecules, “Academic Press, Inc. (London) LTD., 1972. [45] Canamero, P. F. de la Fuente, J. L. Madruga, E. L. Fernandez-Garcia, M., “Atom transfer radical polymerization of glycidyl methacrylate: A functional monomer, “ Macromolecular Chemistry and Physics, 205(16): p. 2221-2228, 2004. [46] Klein, D. R., “Organic Chemistry I as a Sencond Language: Translating the Basic concepts, “ 2004.
摘要: 本研究主要探討以前驅物植入方式,合成無機材質空心微球之機構。吾人在合成反應過程,調整主要參與反應條件的三個主要參數:前驅物、溶劑以及有機微球,進而探討其可能的植入機制。對於前述參與反應之三個反應參數,吾人改變前驅物於不同溶劑系統、有機微球材質於不同溶劑系統,以及改變前驅物添加順序於四氯乙烯溶劑,搭配於反應過程中加入去離子水等。 在改變前驅物材質於不同溶劑系統的研究,主要著眼點是調查前驅物於溶劑之解離度之差異。吾人利用離子層析儀(ICS)分析調查解離度差異對鍛燒後之空心微球產率之影響。發現前驅物於溶劑中呈現低解離時,其合成後之產率亦不佳。改善低解離度問題,吾人嘗試於反應中添加去離子水,發現解離度增加使產率亦上升。 改變前驅物之添加順序是於四氯乙烯溶劑以二階段合成,著眼於其植入量是否有加成之效果?從感應耦合電漿質譜儀(ICP)分析得知一階段之植入含量比二階段之植入含量高,此關係因二階段合成會經過多次清洗,帶走已植入之金屬前驅物所致,再次的植入因此無法使植入含量上升。 使用不同前驅物於四氯乙烯溶劑合成,吾人改變不同價數之金屬離子前驅物合成,發現不同前驅物隨著金屬離子價數增加而產率也相對增加,其中金屬離子價數越高者其離子半徑較小。電價與離子半徑比為離子勢(Ionic Potential),隨離子勢越高,金屬離子易使鄰近元素產生偶極現象而形成鍵結,合成空心微球之產率與離子勢之結果呈正比關係。 最後改變有機微球材質於不同溶劑系統的研究著眼於調查不同高分子材質是否可以合成無機材質空心微球?研究發現聚苯乙烯(PS)與聚甲基丙烯酸甲酯(PMMA)有機微球於己烷與庚烷溶劑中未出現裂解情況,合成後有機微球於高溫鍛燒後有產物生成,但非空心微球。 設計以上實驗觀察其對傅立葉轉換紅外線光譜儀(FTIR)、X光繞射儀(XRD)、感應耦合電漿質譜儀(ICP)、離子層析儀(ICS)、掃描式電子顯微鏡(SEM)、穿透式電子顯微(TEM)以及化學分析電子儀(ESCA)之變化。
This research focuses on mechanisms involved in the synthesis of inorganic hollow particles through a precursor “implantation” route. Probable mechanisms have been systematically examined by changing three process parameters involved in the process, i.e., solvent, organic template sphere, and metal precursor. Experimental designs include change of the precursors in different solvents, change of template materials in different solvents, and change of the implantation order of the precursors, and addition of DI water in tetrachloroethylene solvent, etc. For the change of precursors in different solvents, different degrees of precursor dissociation result in solvents. The degree of dissociation scales with the yield of hollow spheres after removal of polymeric core via thermal pyrolysis. The addition of DI water results in an increased ionic dissociation, leading to an increased yield as well. For the change of implantation order in tetrachloroethylene of, one-step synthesis results in a higher yield of hollow particles than the two-step synthesis from ICP analyses. The main reason lies in the fact that some metallic ions were removed by the washing process. For the synthesis of hollow particles with different precursors in tetrachloroethylene, the yield improves with the high-valence precursors with a reduced ionic radius. The ratio of valence to the ionic radius, i.e., the so-called ionic-potential, is found critically important to the yield of hollow products. This may originate from the dipole interaction around neighboring elements that favor to form bonding. Finally, For the different template materials in different solvents, we discover that when polystyrene and polymethyl methacrylate are used as the template core in solvents of hexane and heptane, there are products after calcinateion. But, they are not hollow spheres. Characterizations such as Fourier-transform infrared spectrometry (FTIR), X-ray diffractometry (XRD), inductively coupled plasma (ICP), Ion Chromatography (ICS), electron microscopy (EM), and electron spectroscopy for chemical analysis (ESCA) have been performed.
URI: http://hdl.handle.net/11455/10941
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.