Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10946
標題: 不同沉積厚度與退火溫度對以電漿輔助化學 氣相沉積法製備n型碳膜性質之影響
Effects of different deposition thicknesses and annealing temperatures on the properties of the n-type carbon thin film prepared by plasma enhanced chemical vapor deposition
作者: 籃崇哲
Lan, Chung-Che
關鍵字: PECVD
n型碳膜
annealing
amorphous carbon
退火
非晶質碳膜
出版社: 材料科學與工程學系所
引用: [1] G.L. Che, B.B. Lakshmi, E.R. Fisher, C.R. Martin, Nature 393 (1998) 346 [2] M. Yoshio, H.Y, Wang, K. Fukuda, Y. Hara, Y. Adachi, J. Electrochem. Soc. 147 (2000) 1245. [3] C. Wang, M. Waje, X. Wang, J.M. Tang, R.C. Haddon, Y.S. Yan, Nano Lett. 4 (2004) 345. [4] D.A. Stewart, F. Lonard, Nano Lett. 5 (2005) 219. [5] J. Robertson, Mater. Sci. Eng., R 37 (2002) 129. [6] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306 (2004) 666. [7] H.W. Kroto, J.R. Heath, S.C. O'Brien, R.F. Curl, R.E. Smalley, Nature 318 (1985) 162. [8] R.H. Baughman, A.A. Zakhidov, W.A. deHeer, Science 297 (2002) 787. [9] H.Zhu, J. Wei, K. Wang, De. Wu, Sol. Energy Mater. Sol. Cells 93 (2009) 1461. [10] J. Robertson, Curr. Opin. Solid State Mater. Sci. 1 (1996) 557. [11] A. Foulami, J. Phys. D: Appl. Phys. 36 (2003) 394. [12] E. Fitzer, K.H. Kochling, H.P. Boehm and H. Marsh, Pure Appl. Chem. 67 (1995) 473. [13] W. Jacob, and W. Möller, Appl. Phys. Lett. 63 (1993) 1771. [14] D. M. Bangnall, and M. Boreland, Energy Policy 36 (2008) 4390. [15] J. Yang, A. Banerjee, and S. Guha, Sol. Energy Mater. Sol. Cells 78 (2003) 597. [16] S. Adhikari, S. Adhikary, A.M.M. Omer, M. Rusop, H. Uchida, T. Soga, M. Umeno, Diamond Relat. Mater. 15 (2006) 188. [17] A. Ilie, O. Harel, N.M.J. Conway, T. Yagi, J. Robertson, W.I. Milne, J. Appl. Phys. 87 (2000) 789. [18] V.S. Veerasamy, G.A.J. Amaratunga, C.A. Davis, A.E. Timbs, W.I. Milne, D.R. Mackenzie, J. Phys.: Condens. Matter 5 (1993) L169. [19] B. Gupta, P.K. Shishodia, A. Kapoor, R.M. Mehra, T. Soga, T. Jimbo, M. Umeno, Sol. Energy Mater. Sol. Cells 73 (2002) 261. [20] S.R.P. Silva, G.A.J. Amaratunga, Thin Solid Films 270 (1995) 194. [21] J.C. Han, M.L. Tan, J.Q. Zhu, S.H. Meng, B.S. Wang, S.J. Mu, D.W. Cao, Appl. Phys. Lett. 90 (2007) 083508. [22] W.S. Choi, K. Kim, J. Yi, B. Hong, Mater. Lett. 62 (2008) 577. [23] H.A. Yu, Y. Kaneko, S. Yoshimura, S. Otani, Appl. Phys. Lett. 68 (1996) 547. [24] H.A. Yu, Y. Kaneko, S. Otani, Y. Sasaki, S. Yoshimura, Carbon 36 (1998) 137. [25] Y. Hayashi, S. Ishikawa, T. Soga, M. Umeno, T. Jimbo, Diamond Relat. Mater. 12 (2003) 687. [26] S. Adhikari, H.R. Aryal, D.C. Ghimire, A.M.M. Omer, S. Adhikary, H. Uchida, M. Umeno, Diamond Relat. Mater. 15 (2006) 1894. [27] A.M.M. Omer, M. Rusop, S. Adhikari, S. Adhikary, H. Uchida, M. Umeno, Diamond Relat. Mater. 14 (2005) 1084. [28] C.H. Lee, K.S. Lim, Appl. Phys. Lett. 72 (1998) 106. [29] K.M. Krishna, T. Soga, T. Jimbo, M. Umeno, Carbon 37 (1999) 531. [30] K.M. Krishna,M. Umeno,Y. Nukaya,T. Soga,T.J imbo, Appl. Phys. Lett. 77 (2000) 1472. [31] K.L. Narayanan, O. Goetzgberger, A. Khan,N. Kojima, M. Yamaguchi, Sol. Energy Mater. Sol. Cells 65 (2001) 29. [32] N. Konofaos, E. Evangelou, C.B. Thomas, J. Appl. Phys. 84 (1998) 4634. [33] N.A. Hastas, C.A. Dimitriadis, D.H. Tassis, S. Logothetidis, Appl. Phys. Lett. 79 (2001) 638. [34] L.Z. Hao, Q.Z. Xue, X.L. Gao, Q. Li, Q.B. Zheng, K.Y. Yan, J. Appl. Phys. 101 (2007) 053718. [35] X.M. Tian, M. Rusop, Y. Hayashi, T. Soga, T. Jimbo, M. Umeno, Sol. Energy Mater. Sol. Cells 77 (2003) 105. [36] M. Rusop, S.M. Mominuzzaman, T. Soga, T. Jimbo, M. Umeno, Sol. Energy Mater. Sol. Cells 90 (2006) 3205. [37] G.A.J. Amaratunga, D.E. Segal, D.R. McKenzie, Appl. Phys. Lett. 59 (1991) 69. [38] Z.Q. Ma, B.X. Liu, Sol. Energy Mater. Sol. Cells 69 (2001) 339. [39] <http://pvcdrom.pveducation.org/> [40] M. Murayama, T. Mori, Thin solid Films 509 (2006) 123. [41] M.K. El-Adawi, I.A. Al-Nuain, Vacuum 64 (2002) 33. [42] Keithley, Application note series, Number 3026. [43] M. Alaluf, J. Appelbaum, L. Klibanov, D. Brinkerb, D. Scheimanb, N. Croitoru, Thin Solid Films 256 (1995) l. [44] M.A. Alaluf, J. Appelbaum, M. Maharizi, A. Seidman, N. Croitoru, Thin Solid Fiims 303 (1997) 273. [45] L.E. Alarco'n, A. Arrieta, E. Camps, S. Muhl, S. Rodil, E.V. Santiago, Appl. Surf. Sci. 254 (2007) 412. [46] X.G. Ma, K. Komvopoulos , D. Wan, D.B. Bogy, Y.S. Kim, Wear 254 (2003) 1010. [47] S. Pisana T, C. Casiraghi, A.C. Ferrari, J. Robertson, Diamond Relat. Mater. 15 (2006) 898. [48] R.U.A. Khan, A.P. Burden, S.R.P. Silva, J.M. Shannon, B.J. Sealy, Carbon 37 (1999) 777. [49] R.D. Forrest, A.P. Burden, R.U.A. Khan, S.R.P. Silva, Surf. Coat. Technol. 108-109 (1998) 577. [50] http://www.hitech-projects.com/dts/docs/pecvd.htm [51] M. Ohring, “Materials science of thin films”, 2nd Ed., Academic Press, San Diego, (2002). [52] http://hyperphysics.phy-astr.gsu.edu/hbase/tables/thexp.html#c1 [53] Taiwan Central Glass Co., Ltd. [54] M. Lejeune, M. Benlahsen, R. Bouzerar, Appl. Phys. Lett. 84 (2004) 344. [55] C.D. Martino, F. Demichelis, A. Tagliaferro, Diamond Relat. Mater. 4 (1995) 1210. [56] F. Tuinstra, and J.L. Koenig, J. Chem. Phys. 53 (1970) 1126. [57] P.C. Eklund, J.M. Holden, R.A. Jishi, Carbon 33 (1995) 959. [58] J.F. Moulder, W.F. Stickle, P.E. Sobol and K.D. Bomben, “Handbook of x-ray photoelectron spectroscopy,” Jill Chastain, United States of America (1992). [59] M. Lejeune, O.D. Drouhin, J. Henocque, R. Bouzerar, A. Zeinert, M. Benlahsen, Thin Solid Films 389 (2001) 233. [60] W.S. Choi, J. Heo, I. Chung, B. Hong, Thin Solid Films 475 (2005) 287. [61] J. Ristein, R.T. Stief, L. Ley, W. Beyer, J. Appl. Phy. 84 (1998) 3836. [62] J. Tauc, R. Grigorovici, A. Vancu, Phys. Stat. Sol. 15 (1966) 627. [63] J. E. LENNARD-JONES, Proc. Phys. Soc. 43 (1931) 461. [64] M. A. Tamor, W. C. Vassell, J. Appl. Phys. 76 (1994) 3823. [65] J. Schwan, S. Ulrich, V. Batori, H. Ehrhardt, S.R.P. Silva, J. Appl. Phys. 80 (1996) 440. [66] V. Paret, M.L. Thèye, J Non-Cryst. Solids 266-269 (2000) 750. [67] E. Tomasella, C. Meunier, S. Mikhailov, Surf. Coat. Technol. 141 (2001) 286. [68] X.M. Tang, J. Weber, Y. Baer, Phys. Rev. B 48 (1993) 10124. [69] S.P. Louh, C.H. Wong, M.H. Hon, Thin Solid Films 498 (2006) 235. [70] M. Veres, S. Tóth, M. Füle, M. Koós, J Non-Cryst. Solids 352 (2006) 1348. [71] L.G. Cançado, K. Takai, T. Enoki, M. Endo, Y.A. Kim, H. Mizusaki, A. Jorio, L.N. Coelho, R. M. Paniago, M.A. Pimenta, Appl. Phys. Lett. 88 (2006) 163106-1-163106-3. [72] G.L. Dû, N. Celini, F. Bergaya, F.P. Epaillard, Surf. Coat. Technol. 201 (2007) 5815. [73] N. Inagaki, K. Narushima, H. Hashimoto, K. Tamura, Carbon 45 (2007) 797. [74] H.S. Zhang, K. Komvopoulos, J. Appl. Phys.106 (2009) 093504. [75] R.Wächter, A. Cordery, Diamond Relat. Mater. 8 (1999) 504. [76] Q. Zhang, S. F. Yoon, Rusli, H. Yang, J. Ahn, J. Appl. Phys. 83 (1998) 1349. [77] D. P. Manage, J.M. Perz, F. Gaspari, E. Sagnes, S. Zukotynski, J Non-Cryst. Solids 270 (2000) 247. [78] M. Benlahsen, B. Racine, K. Zellama, G. Turban, J Non-Cryst. Solids 283 (2001) 47. [79] R. O. Di1lon, J. A. Wool1am, Phys. Rev. B 29 (1984) 3482. [80] S. Kumar, Appl. Phys. Lett. 58 (1991) 1836. [81] B. Bischler, A. Bubenzer, P. Koidl, Solid State Commun. 48 (1983) 105. [82] N.M.J. Conway, A.C. Ferrari, A.J. Flewitt, J. Robertson, W.I. Milne, A. Tagliaferro, W. Beyer, Diamond Relat. Mater. 9 (2000) 765. [83] J.K. Walters, D.M. Fox, T.M. Burke, O.D. Weedon, R. J. Newport, W. S. Howells, J. Chern. Phys. 101 (1994) 4288. [84] N.M.J. Conway, A. Ilie, J. Robertson, W.I. Milne, A. Tagliaferro, Appl. Phys. Lett. 73 (1998) 2456. [85] E. Staryga, G.W. Bąk, Diamond Relat. Mater. 14 (2005) 23. [86] A. Rengan, J. Narayan, C. Jahnke, S. Bedge, J.L. Parkt, M. Li, Mater. Sci. Eng., B 15 (1992) 15. [87] L. Valentini, J.M. Kenny, G. Mariotto, P. Tosi, G. Carlotti, D. Fioretto, L. Lozzi, S. Santucci, Diamond Relat. Mater. 10 (2001) 1088.
摘要: 本論文主要是以電漿輔助化學氣相沉積法在p型矽晶片上製備n型碳膜,並研究沉積厚度與退火溫度對n型碳膜性質之影響。碳膜厚度為67.2、103.0、120.9、143.3、163.5、179.7與229.0 nm,傳統退火溫度分別為100、200、300與400℃,而快速退火溫度分別為100、200、300、400、450、500、600與700℃。實驗中利用表面輪廓儀、拉曼散射光譜儀、X光光電子能譜儀、紫外/可見光光譜儀、原子力顯微鏡、電流電壓功率儀觀察並分析碳鍍層的厚度、微觀結構、光學特性、表面形貌、電壓電流曲線。 研究結果顯示,碳膜厚度會隨著沉積時間增加而呈現上升,而沉積速率則是呈現減少。拉曼與X光光電子能譜結果顯示,隨著厚度增加碳膜會趨向無序。碳膜厚度在103.0 nm~163.5 nm之間時,n型碳/p型矽(n-C/p-Si)太陽能電池有較高的光電轉換效率。於傳統退火中,碳膜厚度會因退火使得氫氣逸出而減少。由拉曼與X光光電子能譜中得知,隨著退火溫度上升,sp2含量會增加,而碳膜會越趨向石墨化。當碳膜結構趨向石墨化,碳膜能隙值會下降,因此n-C/p-Si太陽能電池的光電轉換效率會隨著退火溫度上升而下降。在快速退火中,碳膜厚度也會因退火使得氫氣逸出而減少。拉曼與X光光電子能譜結果顯示,當退火溫度上升,sp2含量也會上升,導致碳膜結構趨向石墨化,能隙值因而下降。退火後因碳膜能隙值下降,而導致n-C/p-Si太陽能電池的光電轉換效率整體下降。
n-type carbon thin films are deposited on p-type silicon wafers using plasma enhanced chemical vapor deposition, and the effect of deposition thicknesses and annealing temperatures on the properties of the carbon film is investigated. The carbon thin thicknesses are 67.2、103.0、120.9、143.3、163.5、179.7 and 229.0 nm. The conventional annealing temperatures are selected at 100, 200, 300, and 400℃,and the rapid annealing temperatures are set to 100, 200, 300, 400, 450, 500, 600, and 700℃. The thickness, microstructure, optical property, and surface property of n-type carbon films are analyzed using the alpha-step profile meter, Raman scattering spectrometer, X-ray photoelectron spectrometer, UV/Vis spectrophotometer, atomic force microscopy, and current-voltage power meter. Experimental results show that the carbon thickness increases with the deposition time, but the deposition rate decreases. Raman and X-ray photoelectron data indicate that ordering degree of the carbon film decreases as the carbon thickness raises. When the carbon thickness is between 103.0 nm and 163.5 nm, the n-carbon/p-silicon (n-C/p-Si) solar cell has the high photoelectric conversion efficiency. In convention annealing, hydrogen is escaped during annealing, so the carbon thickness decreases with increasing the annealing temperature. Raman and X-ray photoelectron results indicate that carbon film structure shift to graphite-like as the annealing temperature increases. The energy band gap of the carbon film decreases when carbon film structure shifts to graphite-like, so the photoelectric conversion efficiency of n-C/p-Si solar cell decreases when the annealing temperature increases. In rapid annealing, the escape of hydrogen during annealing also leads to the decrease of the carbon thickness. Raman and X-ray photoelectron indicate that the carbon film structure shifts to graphite-like as the annealing temperature increases. Increase of graphite structure leads to the reduction of energy band gap. Thus, the photoelectric conversion efficiency of the n-C/p-Si solar cell also decreases.
URI: http://hdl.handle.net/11455/10946
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.