Please use this identifier to cite or link to this item:
標題: 離子束轟擊對鎳鐵/氧化鐵雙層膜之結構與磁性質影響
The influence of ion-beam bombardment on structures and magnetic properties of NiFe/Fe-Oxide bilayers
作者: 呂昭德
關鍵字: exchange field
exchange coupling
coercive field
出版社: 材料科學與工程學系所
引用: [1] David Jiles, “Introduction to magnetism and magnetic materials”, Chapman & Hall [2] Nicola A. Spaldin,”Magnetic materials” [3] 金重勳主編,“磁性技術手冊”, 中華民國磁性技術協會。 [4] A. P. Malozemoff, Phys. Rev. B., 35, 3679 (1987). [5] R. C. O’handley,”Modern Magnetic Materials”,John Wiley and sons Inc.(2002) [6] J. Nogues, Ivan K. Schuller, J. Magn. Magn. Mater., 192, 203 (1999) [7] 柯沛杭,“氧含量對鎳鐵/氧化鐵奈米雙層薄膜結構及磁性之影響”碩士論文,2006。. [8] A. E. Berkowitz, Kentaro Takano, J. Magn. Magn. Mater., 200, 552 (1999) [9] D. Mauri, H. C. Siegmann, J. Appl. Phys., 82, 3047 (1987) [10] T. C. Schulthess and W. H. Butler, Phys. Rev. Lett., 81, 4516 (1998) [11] N. Koon, Phys. Rev. Lett., 78, 4865 (1997) [12] W. P. Meiklejohn, C. P. Bean, Phys. Rev., 102, 1413 (1956). [13] 魏德新、許瑤真,”影像式光電子顯微術於磁性薄膜及微結構研究的介紹”,物理雙月刊廿六卷四期。 [14] A. Baruth, D. J. Keavney, J. D. Burton, K. Janicka, E. Y. Tsymbal, L. Yuan, S. H. Liou, and S. Adenwalla, Phys. Rev. B, 74, 054419 (2006) [15] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau and F. Pctroff, Phys. Rev. Lett., 61, 2472 (1998) [16] R. C. O’handley,”Modern Magnetic Materials”,John Wiley and sons Inc.(2002). [17] Modern Magnetic Materials, R. C. O’Handley, John Wiley and Sons, Inc. New York (2000). [18] J. Nogues, J. Sort, V. Langlais, V. Skumryev, S. Surinach, J.S. Munoz, M.D. Baro, Physics Reports 422, 65 (2005) [19] Phase Diagrams of Ternary Iron Alloys, V. Raghavan, The Indian Institute of Mateals, part 5, 7 (1989) [20] J. S. Moodera et al., Phys. Rev. Lett., 74, 3273 (1995). [21] A. E. Berkowitz and K. Takano, J. Magn. Magn. Mater., 200, 552 (1999) [22] R. C. Weast, ”Handbook of Chemistry and Physics”, CRC Press, Inc 1986 [23] E. M. Levin et al, ”Phase Diagram for Ceramists”, Amer. Cer. Soc., 1964 [24] B. D. and S. R. Stock, “Elements of X-ray Diffraction”, Prentice-Hall, Inc., (2001). [25] Bruce M. Moskowitz, Hitchhiker’s Guide to Magnetism, p16 [26] Ho-kwang Mao, Jinfu Shu, Physics of the earth and Planetary Interiors, 96, 135 (1996). [27] William C. Cain, William H. Meiklejohn, J. Appl. Phys., 61, 4170 (1987). [28] J. J.Cuomo and S. M. Rossnagel, H. R. Kaufman, “Handbook of ion beam processing technology:principles, deposition, film modification , and synthesis”, Noyes Publication, 1989 [29] C.H.Lai, P.H.Huang, J.Appl. Phys., 95, 7222 (2004). [30] 林麗娟,”X光繞射原理及其應用”,工業材料86期 [31] Bruce M. Moskoeitz, Hitchhhiker’s Guide to magnetism [32] 汪建民主編,”材料分析”,中國材料科學學會 [33] David B. Williams and C. Barry Carter, “Transmission Electron Microscopy”, Plenum Press (1996) [34] David Jiles,”Magnetism and Magnetic Materials”, Chapman & Hall,(1991) [35] J. Claudon, F. Balestro, F.W. J. Hekking, and O. Buisson, Phys Rev. Lett. 93, 187003 (2004) [36] 楊鴻昌,”最敏感的感測元件SQUID及其前瞻性應用”,物理雙月刊廿四卷五期 [37] L. H. Lewis, K. M. Bussmann, Rev. Sci. Instrum. 67, 3537 (1996). [38] R. Gupta, K.P. Lieb, Y. Luo, G.A. Muller, P. Schaaf, and K. Zhang, Eur. Phys. J. B 63, 501 (2008) [39] K. H. J. Buschow, ”Concise Encyclopedia of magnetic and Superconducting materials.” [40] K. W. Lin, PhD. Thesis, State University of New York at Stony Brook,(2002). [41] Bruce M. Moskowitz, Hitchhiker’s Guide to Magnetism, p15 [42] C. H. Lai, P. H. Huang, J. Appl. Phys., 95, 7222 (2004). [43] V. RAGHAVAN, “Phase Diagrams of Ternary iron alloys Part 5 Ternary systems containing iron and oxygen”. [44] 岡本祥一,“磁性陶瓷”,復漢出版社,1986。 [45] G. Rollmann, A. Rohrbach, Phys. Rev. B. 69, 165107 (2004). [46] C. H. Lai, P. H. Huang., J. Appl. Phys., 95, 7222 (2004). [47] B. D. Cullitu and S. R. Stock, “Element of X-Ray Diffraction“. [48] J. Nogués, J. Sort, V. Langlais, V. Skumryev, S. Surinach, J. S. Munoz,and M. D. Baro, Phys. Rep., 422, 65 (2005). [49] G. Salazar-Alvarez, J. Sort, S. Surinach, M. D. Baro, and J. Nogues, J.Am. Chem. Soc., 129, 9102 (2007). [50] A. E. Berkowitz and K. Takano, J. Magn. Magn. Mater., 200, 552 (1999). [51] C. Prados, E. Pina, A. Hernando, and A. Montone, J. Phys. Condens. Mat. 14, 10063 (2002) [52] J. McCord, C. Hamann, R. Schafer, L. Schultz, and R. Mattheis, Phys.Rev. B, 78, 094419 (2008) [53] S. Brems, K. Temst, and C. van Haesendonck, Phys. Rev. Lett., 99, 067201(2007) [54] N. C. Koon, Phys. Rev. Lett. 78, 4865 (1997). [55] J. Nogues, D. Lederman, T. Moran, and I. K. Schuller, Phys. Rev. Lett. 76, 3186 (1996) [56] 葉林秀、吳德和,”磁力顯微鏡”,科儀新知第二十一卷第五期89.4 [57] J. Fassbender, D. Ravelosona, and Y. Samson,J. Phys. D 37, R179 (2004).
摘要: 本研究利用雙離子束濺鍍系統製備鎳鐵(厚度10nm)、氧化鐵(厚度26nm)雙層薄膜。利用雙離子束濺鍍系統,Kaufman 型離子源轟擊鐵靶材同時,藉由於 End-Hall 離子源通入氧氣、氬氣, 41%(O2/Ar+O2)之混合氣體,與鐵原子產生反應成氧化鐵薄膜,接著再以輔助離子源(End-Hall)以0~150V不同能量轟擊氧化鐵薄膜,轟擊完再鍍上鎳鐵金屬薄膜,並探討經轟擊過後鎳鐵/氧化鐵雙層薄膜的結構及磁性質。 XRD研究結果顯示上層鎳鐵薄膜為具有面心立方結構之鎳鐵相(a=3.53 Å),但試片看不出明顯的α- Fe2O3之繞射峰,可能因為α- Fe2O3層厚度太薄所致。 穿透式電子顯微鏡分析α-Fe2O3單層薄膜為多晶結構,氧化鐵薄膜為剛玉型六型充填構造,氧化鐵單層薄膜之晶粒大小為8~23nm。 磁性分析顯示,鎳鐵/氧化鐵雙層薄膜在5K(20 kOe場冷)溫度下所測得的磁滯曲線有明顯的偏移的現象,並且有增大的矯頑磁力。離子束能量為70V其具有最大的矯頑磁力(Hc~155 Oe)。離子束轟擊能量為150V其具有最大的交換偏壓場(Hex~324 Oe) 。 離子束能量為130V其具有最小的交換偏壓場(Hex~132 Oe) 以及矯頑磁力(Hc~62Oe)。此行為可歸因於離子束轟擊使α-Fe2O3表面磁矩重新排列所造成的現象。 表面粗糙度分析(AFM),α- Fe2O3單層薄膜於不同離子束能量(0~150V)轟擊表面粗糙度為(Rms~0.2nm)並無明顯變化,並且觀察NiFe/ Fe2O3 (0~150V)雙層薄膜(0V、70V) 粗糙度為(Rms~0.6nm)也無明顯變化。 磁電阻性質顯示出NiFe/ Fe2O3雙層薄膜具有異相性磁阻的行為。在77K時總磁阻變化較室溫時來的大,這是由於聲子散射降低的緣故,在77K時離子束轟擊能量為100V具有最大總磁阻變化 (0.3Ω)。離子束轟擊能量為150V具有最小總磁阻變化 (0.1Ω)。
In this study, the structural and magnetic properties of NiFe(thickness:10 nm)/Fe-Oxide (thickness: 26 nm) bilayer were investigated. Composition of Fe-Oxide varied with the gas flow ratio during dual ion beams assisted deposition. α - Fe2O3 was formed when the O2/(Ar+O2) ratio was 41%. We have fixed this gas flow ratio for the entire sample preparations. Transmission electron microscopy and X-ray results showed that the top NiFe layer is F.C.C. structure (a~ 3.53 Å). The bottom Fe-Oxide layer wasα - Fe2O3. NiFe / α - Fe2O3 bilayer are both polycrystalline, the grain sizes range from 8 nm to 23 nm. Before NiFe alloy was deposited, we bombarded α - Fe2O3 surface with End-Hall Ar-ion source (ion beam energy, VEH, 0~150V) to study the impacts on its Magneto-Trasport properties. Magneto-Trasport properties of NiFe/Fe2O3 bilayer were measured at temperature of 5K. NiFe/ Fe2O3(150V) exhibited the largest exchange bias field (Hex~ 324 Oe). NiFe/Fe2O3 (130 eV) showed the smallest exchange bias field (Hex~132 Oe) and the smallest hysteresis (Hc~62 Oe). The NiFe/Fe2O3 (70V) demonstrated the largest Hc (Hc~155 Oe). We believed the differences were resulted from spin reorientation of α - Fe2O3 after Ar-ion bombardment. AFM Surface analysis indicated that roughness of α- Fe2O3 surfaces(Rms~0.2nm) and NiFe/Fe2O3 surfaces(Rms~0.6nm) did not change with different End-Hall Ar-ion bombarded energies. The magnetotransport studies have shown that these NiFe/(Ni,Fe)O bilayers exhibit the anisotropic magnetoresistance (AMR) behavior. . The NiFe/Fe2O3 at 77 K (100V) demonstrated the largest MR variation (0.3Ω)..The NiFe/Fe2O3 (150V) demonstrated the smallest MR variation (0.1Ω).
Appears in Collections:材料科學與工程學系



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.