Please use this identifier to cite or link to this item:
標題: 以熱燈絲化學氣相沉積法研製碳化矽薄膜及其在太陽電池本質層之應用
Fabrication of Silicon Carbide Thin Films Using Hot-Wire CVD for Solar-Cell Intrinsic Layer Applications
作者: 邱世璿
Chiu, Shih-Hsuan
關鍵字: hot-wire CVD
silicon carbide
solar cell
出版社: 材料科學與工程學系所
引用: [1]KRI Report No.8:Solar Cells, February 2005. [2]黃惠良、曾百亨等,太陽電池 Solar Cells ,五南出版社。 [3]B. Abeles, G. D. Cody, Y. Goldstein, C.R. Wronski ,“Hydrogenated Amorphous Silicon Solar Cells,” Thin Solid Films, vol. 90, pp. 441-449, 1982. [4]S. Bauer, B. Schroder, H. Oechsner, “The Effect of Hydrogen Dilution on the Microstructure and Stability of a-Si:H Films Prepared by Different Techniques,” Thin Solid Films, vol. 227-230, pp. 34-38, 1998. [5]F. Giorgis, F. Giuliani, C. F. Pirri, J. P. Conde, V. Chu, “Wide Band Gap a-SiC:H Films for Optoelectronic Applications,” Thin Solid Films, vol. 395, pp. 227-230, 1998. [6]B. P. Nelson , Y. Q. Xu, D. L. Williamson, D. Han, R. Braunstein, M. Boshta, B. Alavi, “Narrow Gap a-SiGe:H Grown by Hot-wire Chemical Vapor Deposition,” Thin Solid Films, vol. 430, pp. 104-109, 2003. [7]K. Yamamoto, “Thin Film Crystalline Silicon Solar Cells”, JSAP Int. No. 7 pp. 12-19, 2003. [8]C. Strobel, T. Zimmermann, M. Albert, J. W. Bartha, and J. Kuske, “Productivity Potential of an Inline Deposition System for Amorphous and Microcrystalline Silicon Solar Cells,” Thin Solid Films, vol. 93, pp. 1598-1607, 2009. [9]W. R. Fahrner, M. Muehlbauer, H. C. Neitzert, “Silicon Heterojunction Solar Cells”, p. 42, 2006. [10]J. A. Lely: Ber Deut. Keram. Ges. 32, 229, 1955. [11]J. H. Boo, K. S. Yu, M. Lee, and Y. Kim, “Deposition of Cubic SiC Films on Silicon Using Dimethlisopropylsilane”, Appl. Phys. Lett. Vol. 66 , No. 25, pp. 3486-3488, 1995. [12]C. A. Zorman, S. Rajgopal, X. A. Fu, R. Jezeski, J. Melzak, and M. Mehregany, “Deposition of Polycrystalline 3C-SiC Films on 100 mm Diameter Si(100) Wafers in a Large-Volume LPCVD Furnace”, Electrochemical and Solid-State Letter Vol. 5, No. 10, pp. 99-101, 2002. [13]B. P. Swain, R. O. Dusane, “Effect of Filament Temperature on HWCVD Deposited a-SiC:H”, Materials Letters, Vol. 60, pp. 2915–2919, 2006. [14]C. Bittencourt, “Reaction of Si (100) with Silane–Methane Low-Power Plasma: SiC Buffer-Layer Formation”, J. Appl. Phys., Vol. 86, pp. 4643-4648, 1999. [15]D. S. Wuu, R. H. Horng, C. C. Chan, and Y. S. Lee, “Plasma-deposited Amorphous Silicon Carbide Flms for Micromachined Fluidic Channels”, Appl. Surf. Sci., Vol. 144, pp. 708-712 , 1999. [16]W. H. Lee, J. C. Lin, C. Lee, H. C. Cheng, T. R. Yew, “Effects of CH4 /SiH4 Flow Ratio and Microwave Power on the Growth of β-SiC on Si by ECR-CVD Using CH4 /SiH4 /Ar at 200℃”, Thin Solid Films, 405, pp. 17-22, 2002. [17]Y. Komura, A. Tabata, T. NaritaA, M. Kanaya, A. Kondo, T. Mizutani, “Film Properties of Nanocrystalline 3C–SiC Thin Films Deposited on Glass Substrates by Hot-Wire Chemical Vapor Deposition Using CH4 as a Carbon Source,” Jpn. J. Appl. Phys., vol. 46, pp. 45-50, 2007. [18]H. Wiesmann, A. K. Ghosh, T. McMahon, M. Strongin, “a-Si:H Produced by High-Temperature Thermal Decomposition of Silane,” J. Appl. Phys., vol. 50, pp. 3752-3754, 1979. [19]H. Matsumura and H. Tachibana, “Amorphous Silicon Produced by a New Thermal Chemical Vapor Deposition Method Using Intermediate Species SiF2,” J. Appl. Phys., vol. 47, pp. 833-835, 1985. [20]A. H. Mahan, J. Carapella, B. P. Nelson, and R. S. Crandall, “Deposition of Device Quality, Low H Content Amorphous Silicon,” J. Appl. Phys., vol.69, pp. 6728-6730, 1991. [21]H. Matsumura, “Formation of Polysilicon Films by Catalytic Chemical Vapor Deposition (Cat-CVD) Method,” Jpn. J. Appl. Phys., Vol. 30, pp. 1522-1524, 1991. [22]H. Matsumura, “Silicon Nitride Produced by Catalytic Chemical Vapor Deposition Method,” J. Appl. Phys., vol. 66, pp. 3612-3617, 1989. [23]R. E. I. Schropp, “Hot Wire Chemical Vapor Deposition: Recent Progress Present State of the Art and Competitive Opportunities”, p. 216, 2009. [24]Y. Komura, A. Tabata, T. Narita, M. Kanaya, A. Kondo, and T. Mizutani, “Film Properties of Nanocrystalline 3C–SiC Thin Films Deposited on Glass Substrates by Hot-Wire Chemical Vapor Deposition Using CH4 as a Carbon Source,” J. Appl. Phys., vol. 46, pp. 46-50, 2007. [25]H. Matsumura, “Formation of Polysilicon Films by Catalytic Chemical Vapor Deposition (Cat-CVD) Method,” Jpn. J. Appl. Phys., Vol.30, pp. L1522-L1524, 1991. [26]G. Saggio, E. Verona, P. D. Rosa, S. L. Monica, R. Salotti, L. Schirone, “Reactive Ion Etching Characterization of a-SiC:H in CF4/O2 Plasma,” Materials Science and Engineering B, Vol. 29, Issues 1-3, 1995. [27]許樹恩、吳泰伯,X光繞射原理與材料結構分析,民全書局, 1993。 [28]M. Zhu, X. Guo, G. Chen, H. Han, M. He, K. Sun, “Microstructures of Microcrystalline Silicon Thin Films Prepared by Hot Wire Chemical Vapor Deposition,” Thin Solid Films, vol. 360, pp. 205-212, 2000. [29]A. Tabata, M. Mori, “Structural Changes of Hot-Wire CVD Silicon Carbide Thin Films Induced by Gas Flow Rates,” Thin Solid Films, vol. 516, pp. 626-629, 2008. [30]B. P. Swain, R. O. Dusane, “Multiphase Structure of Hydrogen Diluted a-SiC:H Deposited by HWCVD,” Materials Chemistry and Physics , vol. 99, pp. 240–246, 2006.
摘要: 本研究旨在利用熱燈絲化學氣相沉積技術製作碳化矽薄膜並應用於薄膜太陽電池吸光層。透過控制碳化矽沉積時的矽甲烷、甲烷及氫稀釋比例,探討不同製程條件相對的薄膜光電特性與結構變化,並優化製程條件使產出元件等級之碳化矽薄膜,最後實際製作成薄膜太陽電池以驗證此薄膜的品質。薄膜分析部分使用了化學分析電子能譜儀、傅立葉轉換紅外線光譜儀來探討Si-C成份的化學鍵結;以X光繞射儀、拉曼光譜儀鑑定薄膜的晶體結構;以場發射電子顯微鏡觀察其表面形貌;並分析薄膜的光暗電導特性與光學性質,探討各參數對薄膜品質之影響。在本研究中,透過材料分析與製程條件之修改,當矽甲烷、甲烷比例為1:1時,可以得到較佳的本質碳化矽薄膜,此時薄膜之光學能隙為1.98eV,光電導/暗電導的比值約在103左右。元件製作部分使用ITO玻璃作為基材,以單一腔體之熱燈絲化學氣相沉積系統連續製作p型碳化矽、本質碳化矽與n型微晶矽薄膜,形成pin薄膜太陽電池結構,最後再以電子束蒸鍍系統鍍上金屬背電極,此碳化矽薄膜太陽電池效率達=2.44 %,未來持續改善製程條件進而應用於串接式結構。
In this thesis, silicon carbide (SiC) thin films prepared by hot-wire chemical vapor deposition (HWCVD) system was investigated for absorption layer of thin-film solar cells applications. During the deposition, the gas flow rate ratios of SiH4 and CH4 and H2 dilution were varied to study the effects of process conditions on the optoelectronic characteristics and microstructures of SiC thin films. The optimized process conditions of SiC thin film deposition were used to fabricate thin film solar cells. Details of material characteristics of SiC thin films were investigated in terms of x-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectrometer, x-ray diffraction (XRD), Raman spectroscopy, and field-emission scanning electron microscopy (FESEM). Electrical properties of SiC thin films were determined by I-V measurement under AM1.5. The optimum deposition conditions of SiC thin film were SiH4/CH4 ratio of 1 and without H2 dilution. The optical bandgap and ratio of photo- and dark-conductivity of SiC thin film were 1.98 eV and 1000, respectively. In thin film solar cell fabrication, p-type SiC, intrinsic SiC, and n-type microcrystalline Si thin films were prepared on ITO glass substrates by HWCVD system. Al back-electrode was used and prepared by electron-beam evaporation. The efficiency of SiC thin film solar cells was 2.44 %. The further improvement of process conditions on SiC thin film could be performed for tandem solar cells.
Appears in Collections:材料科學與工程學系



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.