Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11054
標題: 藍寶石微陣列蝕刻對氮化銦鎵發光二極體特性影響之研究
Microarray Etching of Sapphire Wafers and Its Effect on Characteristics of InGaN Light Emitting-Diodes
作者: 文國昇
Wen, Kuo-Sheng
關鍵字: Microarray Etching
微陣列蝕刻
sapphire
LED
藍寶石
發光二極體
出版社: 材料工程學系所
引用: [1].N. Nakada, M. Nakaji, H. Ishikawa, T. Egawa, M. Umeno, and T. Jimbo, “Improved characteristics of InGaN multiple-quantum-well light-emitting diode by GaN/AlGaN distributed Bragg reflector grown on sapphire,” Appl. Phys. Lett. 76, 1804 (2000). [2].T.C. Wen, S.J Chang, L.W Wu, Y.K. Su, W.C. Lai, C.H. Kuo, C.H. Chen, J.K. Sheu, and J.F. Chen, “InGaN/GaN Tunnel-Injection Blue Light-Emitting Diodes,” Electron Devices, IEEE Transactions 49,1093 (2002). [3].D.B. Eason, W.C. Hughes, J. Ren, M. Riegner, Z. Yu, J.W. Cook, J. F. Schetzina, G. Cantwell, and W.C. Harsch, “High-brightness green light-emitting diodes,” Electron. Lett. 30, 1178 (1994). [4].G.E. Stillman, V.M. Robbins, and N. Tabatabaie, “Ⅲ-V compound. semiconductor devices: Optical detectors,” Electron Devices, IEEE Transactions 31, 1643 (1984). [5].K. H. Kim, Z. Y. Fan, M. Khizar, M. L. Nakarmi, J. Y. Lin, and H. X. Jiang, “AlGaN-based ultraviolet light-emitting diodes grown on AlN epilayers,” Appl. Phys. Lett. 85, 4777 (2004). [6].H. Sugawara, and M. Ishikawa, and G. Hatakoshi, “High-efficiency InGaAlP/GaAs visible light-emitting diodes,” App. Phys. Lett. 58, 1010 (1991). [7].H. Sugawara, and M. Ishikawa, and G. Hatakoshi, “High-brightness InGaAlP green light-emitting diodes,” App. Phys. Lett. 61, 1752 (1992). [8].D. A. Vanderwater, I. H. Tan, G. E. Hofler, D. C. DeFevere, and F. A. Kish, “High-brightness AlGaInP light emitting diodes,” IEEE. 85, 1752 (1997). [9].S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai, “Superbright Green InGaN Single-Quantum-Well-Structure Light-Emitting Diodes,” Jpn. J. Appl. Phys. 34, L1332 (1995). [10].F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, and M. G. Craford, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1–x)0.5In0.5P/GaP light-emitting diodes, ”Appl. Phys. Lett. 64, 2839 (1994). [11].F. A. Kish, D. A. Vanderwater, D. C. DeFevere, D. A. Steigerwald, G. E. Hofler, K. G. Park, and F. M. Steranka, “,”Electron. Lett. 32, 132 (1996). [12].J. I, Pankove, and P. E. Norris, RCA (Radio Corporation of America) Review. 33, 377 (1972). [13].S. Yoshida, S. Misawa, and S. Gonda, “Epitaxial growth of GaN/AlN heterostructures,” Journal of Vacuum Science & Technology B. 1, 250 (1982). [14].M. Hao, T. Sugahara, H. Sato, Y. Morishima, Y. Naoi, L. T. Romano, and S. Sakai, “Study of Threading Dislocations in Wurtzite GaN Films Grown on Sapphire by Metalorganic Chemical Vapor Deposition,” Jpn. J. Appl. Phys. 37, L291 (1998). [15].E. Kuokstis, C.Q. Chen, J.W. Yang, M. Shatalov, M.E. Gaevski, V. Adivarahan, and M. A. Khan, “Room-temperature optically pumped laser emission from a-plane GaN with high optical gain characteristics,” Appl. Phys. Lett. 84, 2998 (2004). [16].P. Fini, L. Zhao, B. Moran, M. Hansen, H. Marchand, J. P. Ibbetson, S. P. DenBaars, U. K. Mishra, and J. S. Speck, “High-quality coalescence of laterally overgrown GaN stripes on GaN/sapphire seed layers,” Appl. Phys. Lett, 75, 1706 (1999). [17].史光國, “GaN 藍色發光及雷射二極體之發展現況”, 工業材料126,154 頁, 民國86 年6 月. [18].廖偉材, “氮化鋁鎵/氮化鎵超晶格原子層磊晶之研究”, 逢甲大學材料科學研究所碩士論文, 2002. [19].E. Kurtz, M. Schmidt, M. Baldauf, S. Wachter, M. Grün, D. Litvinov, S.K. Hong, and J.X. Shen, “Properties and self-organization of CdSe:S quantum islands grown with a cadmium sulfide compound source,” J. Cryst. Growth, 214/215, 712 (2000). [20].J.A. Freitas Jr, G.C.B. Braga, W.J. Moore, J.G. Tischler, J.C. Culbertson, M. Fatemi, and S.S. Park, “Structural and optical properties of thick freestanding GaN templates,” J. Cryst. Growth 231, 322 (2001). [21].F. K. Shan, G. X. Liu, W. J. Lee, G. H. Lee, I. S. Kim, and B.C. Shin, “Structural, electrical, and optical properties of transparent gallium oxide thin films grown by plasma-enhanced atomic layer deposition,” J. Appl. Phys. 98, 023504 (2005). [22].U. Akira, S. Haruo, K. Kenji, W. Heiji, and M. Masashi, “Characteristics of FIELO-GaN grown by hydride vapor phase epitaxy,” Materials Research Society Symposium-Proceedings, 639 561 (2001). [23].B. Beaumont, Ph. Venne’gue`s, and P. Gibart1 “Epitaxial Lateral Overgrowth of GaN,” phys. stat. sol. (b) 227, 1 (2001). [24].Y. Kato, S. Kitamura, K. Hiramatsu, and N. Sawaki, “Selective growth of wurtzite GaN and AlxGa1-xN on GaN/sapphire substrates by metalorganic vapor phase epitaxy,” J. Cryst. Growth , 144, 133 (1994). [25].K. Tadatomo, H. Okagawa, Y. Ohuchi, T. Tsunekawa, T. Jyouichi, Y. Imada, M. Kato, H. Kudo, and T. Taguchi, “High Output Power InGaN Ultraviolet Light-Emitting Diodes Fabricated on Patterned Substrates Using Metalorganic Vapor Phase Epitaxy,” phys. stat. sol. (a), 188, 121 (2001). [26].W. K. Wang, D. S. Wuu, S. H. Lin, P. Han, R. H. Hrong, T. C. Hsu, D. C. Huo, M. J. Jou, Y. H. Yu, and A. Lin, “Efficiency improvement of near-ultraviolet InGaN LEDs using patterned sapphire substrates,” IEEE J. Quantum. Electron., 41, 1403 (2005). [27].M. Kappelt, and D. Bimberg, “Wet Chemical Etching of High Quality V-Grooves with {111} A Sidewalls on (001) InP,” J. Electrochem. Soc., 143, 3271 (1996). [28].周國清, 徐科, 郭佩珍, 徐軍, 周永宗,干福熹,朱人元,“溫梯法生長藍寶石晶體錯位的化學腐蝕形貌,”中國硫酸鹽學報. 第27卷第6期(1999). [29].Jing Wang, L. W. Guo, H. Q. Jia, Y. Wang, Z. G. Xing, W. Li, H. Chen, and J. M. Zhou, “Fbrication of Patterned Sapphire Substrate by Wet Chemical Etching for Maskless Lateral Overgrowth of GaN,” J. Electrochem. Soc. 153, C182 (2006). [30].S. K. Hong, B. J. Kim, H. S. Park, Y. Park, S. Y. Yoon, and T. I. Kim, “Evaluation of nanopipes in MOCVD grown (0001) GaN/Al2O3 by wet chemical etching,” J.Cryst. Growth 191, 275 (1998). [31].K. Shiojima, “Atomic force microscopy and transmission electron microscopy observations of KOH-etched GaN surfaces,” J. Vac. Sci. Technol. B 18, 37 (2000). [32].T. Hino, S. Tomiya, T. Miyajima, K. Yanashima, S. Hashimoto, and M. Ikeda, “Characterization of threading dislocations in GaN epitaxial layers,” Appl. Phys. Lett. 76, 3421 (2000). [33].D. Wang, S. Jia, K. J. Chen, and K. M. Lau, “Micro-Raman-scattering study of stress distribution in GaN films grown on patterned Si(111) by metal-organic chemical-vapor deposition,” J. Appl. Phys., 97, 056103 (2005).
摘要: 本論文主要研究,利用在藍寶石進行微陣列蝕刻並製作氮化銦鎵發光二極體。為了避免電漿乾式蝕刻對藍寶石基板表面結構產生破壞與應力,我們用化學性蝕刻取代電漿蝕刻其蝕刻反應活化能為28kcal/mol。化學性蝕刻的特性與電漿蝕刻不同,因為化學性蝕刻為非等向性的,我們可觀察到化學性蝕刻的微孔洞為三面對稱的倒三角錐狀。我們利用穿透式電子顯微鏡之影像, 蝕刻缺陷孔洞, 光激發光譜儀與雙晶繞射X光譜之量測分析的結果,證實氮化鎵薄膜成長於微陣列蝕刻孔洞,可降低差排缺陷密度與提升氮化鎵薄膜的磊晶品質。當發光二極體操作在室溫及順向電流20 mA時,化學性蝕刻微陣列孔洞與原始藍寶石發光二極體其輸出功率分別是9.35 mW與7.45mW,因此可得知於藍寶石上蝕刻微陣列孔洞之發光二極體可提升25%的輸出功率。輸出功率的增加除了為降低差排所提升的內部量子效率,還有微陣列孔洞所貢獻的光取出率,增加了外部量子效率。我們利用模擬軟體探討光路徑,可得直知微陣列孔洞的反射面,可增加光子在氮化鎵與藍寶石介面逃出的機會,故增加了光取出率。此外,與成長於原始藍寶石基板上的發光二極體,具有蝕刻微陣列孔洞其接面溫度較小。
In this study, Microarray Etching of sapphire wafer was used to fabricate the near-ultraviolet InGaN-based light-emitting diodes (LEDs). In order to avoid the damage and strain to the substrate surface, we make use chemical etching, instead of plasma etching. the activation energy of this reaction is determined to be 28.2 kcal/mol. Because chemical etching is anisotropic, we could observer three symmetric sidewall facets of the etched pyramidal holes were on the sapphire. An evident reduction in dislocation density of the GaN on sapphire with microarray etching can be confirmed by the transmission-electron-microscopy, etch-pit-density, double-crystal x-ray and micro photoluminescence measurement. Under a 20-mA forward injection current, the output power of the conventional and sapphire with microarray etching LEDs were 7.45 and 9.35 mW, respectively. A 25% improvement in output power was achieved in the LED with microarray etching as compared with that of the conventional LED sample. The enhanced output power is not only due to the improvement of the internal quantum efficiency upon decreasing the dislocation density, but also due to the enhancement of the extraction efficiency using with microarray etching. From light-tracing calculation, the microarray reflector arrays can offer more probability of escaping photons from the GaN/sapphire interface, resulting in an increase in light extracting efficiency. In addition, LED with microarray etching owns smaller junction temperature compare with the conventional LEDs.
URI: http://hdl.handle.net/11455/11054
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.