Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11060
DC FieldValueLanguage
dc.contributor吳宗明zh_TW
dc.contributorTzong-Ming Wuen_US
dc.contributor王宏文zh_TW
dc.contributor向性一zh_TW
dc.contributorHong-Wen Wangen_US
dc.contributor.advisor曾文甲zh_TW
dc.contributor.advisorWenjea J. Tsengen_US
dc.contributor.author許逸儒zh_TW
dc.contributor.authorShiu, Yi-Ruen_US
dc.contributor.other中興大學zh_TW
dc.date2007zh_TW
dc.date.accessioned2014-06-06T06:46:57Z-
dc.date.available2014-06-06T06:46:57Z-
dc.identifier.citation[1] D. Beydoun, R. Amal, G. K. C. Low, S. Mcevoy, “Novel Photocatalyst: Titania-Coated Magnetite. Activity and Photodissolution”, J. Phys. Chem. B, 140, 4387-4396, 2000. [2] D. C. Schnitzler, M. S. Meruvia, I. A. Hümmelgen, A. J. G. Zarbin, ” Preparation and Characterization of Novel Hybrid Materials Formed from (Ti,Sn)O2 Nanoparticles and Polyaniline”, Chem. Mater., 15, 4658-4665, 2003. [3] D. I. Gittins, F. Caruso, “Tailoring the Polyelectrolyte Coating of Metal Nanoparticles”, J. Phys. Chem. B, 105, 6846-6852, 2001. [4] S. J. Tauster, S. C. Fung, and R. L. Garten, “Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide”, J. Am. Chem. Soc., 170, 100 1978. [5] A. Fujishima ,K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode”, Nature, 238, 37, 1972. [6] H. Yoneyama, Y. Toyoguchi, and H. Tamura, “Reduction of methylene blue on illuminated titanium dioxide in methanolic and aqueous solutions”, J. Phys. Chem., 76, 3460-3464, 1972. [7] M. Abdullah, F. Iskandar, S. Sgibamoto, T. Ogi, K. Okuyama, “Preparation of oxide particles with ordered macroproes by colloidal templating and spray pyolysis”, Acta Mater., 52, 5151-5156, 2004. [8] T. Inoue, A. Fujishima ,S. Kishi ,K. Honda, “Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders”, Nature, 277, 637, 1972. [9] M. Gratzel, “Photochemical solar cells based on Dye-Sensitization of nanocrytsalline TiO2”, Comments Ingo. Chem., 13, 12, 1991. [10] H. Tang, K. Prasad, R.Sanjines, P. E. Schmid, F. Levy, “Electrical and optical properties of TiO2 anatase thin films”, J. Appl. phys.,75, 2024, 1994. [11] K. S. Mayya, D. I. Gittins, F. Caruso. “Gold-Titania Core-Shell Nanoparticles by Polyelectrolyte Complexation with a Titania Precursor”, Chem. Mater., 13, 3833, 2001. [12] D. Beydoun, R. Amal, “Implications of heat treatment on the properties of a magnetic iron oxide-titanium dioxide photocatalyst”, Mater. Sci. Eng., B94, 71, 2002. [13] T. Keichi, “Effect of crystallinity of TiO2 on its photocatalytic action ”, Chem. Phys. Lett. 1991, 187, 73. [14] L. Zheng, M. Xu, and T. Xu, “TiO2−x thin films as oxygen sensor”, Sens. Actuator B-Chem., 66, 28, 2000. [15] M. Ferroni, V. Guidi, G. Martinelli, G. Faglia, P. Nelli, and G. Sberveglieri, “Characterization of a nanosized TiO2 gas sensor”, Nanostructured Mater., 7, 709, 1996. [16] Y. Takao, K. Fukuda, Y. Shimizu, M. Egashira, “Trimethylamine-sensing mechanism of TiO2-based sensors 2. Effects of catalytic activity of TiO2-based specimens on their trimethylamine-sensing properties”, Sens. Actuator B-Chem., 10, 235, 1993. [17] N. Negishi, K. Takeuchi, and T. Ibusuki, “Surface structure of the TiO2 thin film photocatalyst”, J. Mater. Sci., 33, 5789, 1998. [18] N. N. Rao, S. Dube, “Photocatalytic degradation of mixed surfactants and some commercial soap/detergent products using suspended TiO2 catalysts ”, J. Mol. Catal. A, 104, L197, 1996. [19] E. Pelizzetti, C. Minero, “Mechanism of the photo-oxidative degradation of organic pollutants over TiO2 particles ”, Electrochim. Acta, 38, 47, 1993. [20] X. Z. Li, F. B. Li, C. L. Yang, W. K. Ge, “Photocatalytic activity of WOx-TiO2 under visible light irradiation”, J. Photochem. Photobio. A-Chem., 141, 209, 2001. [21] A. L. Dalisa, “Electrophoretic display technology”, IEEE Trans. Electron Devices, ED-24, 7,827-834, 1977. [22] B. Comiskey, J. D. Albert, H. Yoshizawa, J. Jacobson, “An electrophoretic ink for all-printed reflective electronic displays”, Nature, 394, 253-255,1998. [23] T. Keichi, “Effect of crystallinity of TiO2 on its photocatalytic action”, Chem. Phys. Lett. 187, 73, 1991. [24] 林夢萱, “Ag-SrTiO3 奈米核-殼結構粒子之研究與製備”, 中原大學化工所碩士論文, 5, 2003. [25] H. Shihol, N. Kawahashi, “Preparation of electrically conducting particles consisting of a polymer core and a metallic copper shell”, Colloid Polym. Sci., 278, 270-274, 2000. [26] Z. Y. Zhong, Y. D. Yin, B. Gate, Y. N. Xia, “Preparation of Mesoscale Hollow Spheres of TiO2 and SnO2 by Templating Against Crystalline Arrays of Polystyrene Beads”, Adv. Mater., 12, NO.3,206-209, 2000. [27] A. Imhof, “Preparation and Characterization of Titania-Coated Polystyrene Spheres and Hollow Titania Shells”, Langmuir, 17, 2579-3585, 2001. [28] W. C. Bell, K. S. Booksh, M. L. Myrick, “Monitoring Anhydride and Acid Conversion in Supercritical/Hydrothermal Water by in Situ Fiber-Optic Raman Spectroscopy”, Anal. Chem., 7, 332-339, 1998. [29] R. I. Walton, R. I. Smith, F. Millange, I. J. Clark, D. C. Sinclair, “An in situ time-resolved neutron diffraction study of the hydrothermal crystallisation of barium titanate ”, Chem. Commun., 1267-1268, 2000. [30] D. Beydoun, R. Amal, “Implications of heat treatment on the properties of a magnetic iron oxide-titanium dioxide photocatalyst”, Mater. Sci. Eng. B, B94, 71-81, 2002. [31] J. L. Sumerel, W. Yang, D. Kisailus, J. C. Weaver, J. H. Choi, D. E. Morse, “Biocatalytically Templated Synthesis of Titanium Dioxide”, Chem. Mater., 15, 4804-4809, 2003. [32] D. I. Gittins, F. Caruso, “Multilayered Polymer Nanocapsules Derived from Gold Nanoparticle Templates”, Adv. Mater., 24, 1947-1949, 2000. [33] D. Wang, R. A. Caruso, F. Caruso, “Synthesis of Macroporous Titania and Inorganic Composite Materials from Coated Colloidal Spheres-A Novel Route to Tune Pore Morphology”, Chem. Mater., 13, 364-371, 2001. [34] K. Subramanya, D. I. Gittins, F. Caruso, “Gold-Titania Core-Shell Nanoparticles by Polyelectrolyte Complexation with a Titania Precursor”, Chem. Mater.,13, 3833-3836, 2001. [35] Y. D. Yin, Y. Ku, B. Gates, Y. N. Xia, “Synthesis and Characterization of Mesoscopic Hollow Spheres of Ceramic Materials with Functionalized Interior Surfaces”, Chem. Mater., 13, 1146-1148, 2001. [36] A. Hanprasopwattana, T. Rieker, A. G. Sault, A. K. Datye, “Dye-Sensitized Core-Shell Nanocrystals: Improved Efficiency of Mesoporous Tin Oxide Electrodes Coated with a Thin Layer of an Insulating Oxide”, Chem. Mater., 14, 2930-2935, 2002. [37] O. D. Velev, Z. H. Nagayama, “Assembly of Latex Particles by Using Emulsion Droplets. 3. Reverse (Water in Oil) System”, Langmuir, 13, 1856-1859, 1997. [38] Z. H. Yang, D. L. Zhao, M. Xu, Y. A. Xu, “Mechanistic investigation on the formation of epoxy resin multi-hollow spheres prepared by a phase inversion emulsification technique”, Macromol. Rapid Comm., 21,574-578, 2000. [39] I. Pastoriza-Santos, D.S. Koktysh, A. A. Mamedov, M. Giersig, N. A. Kotov, L. M. Liz-Marzán, “One-Pot Synthesis of Ag@TiO2 Core-Shell Nanoparticles and Their Layer-by-Layer Assembly”, Langmuir, 16, 2731-2735, 2000. [40] X. M. Wang, P. Xiao, “Non-template synthesis of titania hollow spheres and their thermal stability”, J. Mater. Res., 20, 796, 2005. [41] Y. Xia, R. Mokaya, “Hollow spheres of crystalline porous metal oxides: A generalized synthesis route via nanocasting with mesoporous carbon hollow shells”, J. Mater. Chem., 15, 3126-3131, 2005. [42] H. Huang, E. E. Remsen, T. Kowalewski, K. L. Wooley, “Nanocages Derived from Shell Cross-Linked Micelle Templates”, J. Am. Chem. Soc., 121, 3805, 1999. [43] R. W. Matthews, “Solar-Electric Water Purification Using Photocatalytic Oxidation with TiO2 as a Stationary Phase”, Sol. Energy, 8, 405, 1987. [44] R. W. Matthews, “Photooxidation of organic impurities in water using thin films of titanium dioxide”, J. Phys. Chem., 91, 3328, 1987. [45] R. W. Matthews, “Photocatalytic Oxidation andAdsorption of Methylene Blue on Thin Films of Near-ultraviolet-illuminated TiO2”, J. Chem. Soc., 85, 1291, 1995. [46] M. Ohmori, E. Matijevic, “Preparation and properties of uniform coated colloidal particles. VII. Silica on hematite ”, J. Colloid Interface Sci., 150,594, 1992. [47] H. Mökel, M. Giersig, F. Willig, “Formation of uniform size anatase nanocrystals from bis(ammonium lactato)titanium dihydroxide by thermohydrolysis”, J. Mater. Chem., 9, 3051-3056, 1999. [48] O. Harizanov, A. Harizanov, T. Ivanov, “Formation and characterization of sol–gel barium titanate”, Mater. Sci. and Eng. B, B106, 191-195, 2004. [49] O. Harizanov, A. Harizanov, “Development and investigation of sol-gel solutions for the formation of TiO2 coatings”, Solar Energy Mater. and Solar Cells, 63, 185, 2000. [50] S. Doeuff, M. Henry, C. Sanchez, J. Livage, “Hydrolysis of titanium alkoxides: Modification of the molecular precursor by acetic acid”, J. Non-Cryst. Solids, 89, 206, 1987. [51] F. Caruso, X. shi, R. A. Caruso, A. Susha, “Hollow Titania Spheres from Layered Precursor Deposition on Sacrificial Colloidal Core Particles”, Adv. Mater., 13, No. 10, 740-744, 2001. [52] D. I. Gittins, F. Caruso, “Tailoring the Polyelectrolyte Coating of Metal Nanoparticles”, J. Phys. Chem. B, 105, 6846-6852, 2001. [53] F. Caruso, “Colloids and Colloid Assemblies”, Wiley-VCH, 2003. [54] R. A. Caruso, A. Susha, F. Caruso, “Multilayered Titania, Silica, and Laponite Nanoparticle Coatings on Polystyrene Colloidal Templates and Resulting Inorganic Hollow Spheres”, Chem. Mater., 13, 400-409, 2001zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/11060-
dc.description.abstract本研究利用均一粒徑尺寸的塑膠微球作為犧牲模板(Sacrificial Template),結合層接層法與化學水熱合成法製作無機材質二氧化鈦/塑膠微球之核殼結構。吾人藉由添加不同的分散劑,調查添加分散劑與否以及添加不同性質的分散劑對合成的中空二氧化鈦微球的影響。研究發現吾人所使用之犧牲模板添加分散劑與否都能形成中空二氧化鈦微球,吾人計算破球數與總中空球數的比值發現非離子型分散劑TX-100出現破球的機率為2.19%、未添加任何分散劑為1.55%、添加陰離子型分散劑PSS為1.6%,而添加陽離子型分散劑PDADMAC為0.22%,其中以添加PDADMAC所合成出的中空二氧化鈦微球的良率最佳。以TEM觀察微球的顯微結構,在未添加任何分散劑時的殼層厚度估計約為47 nm,吾人利用電荷相反產生靜電吸引力的作用,配合層階層法反覆吸附PDADMAC再被覆TALH的步驟5次形成(PDADMAC/TALH)5的中空二氧化鈦微球(註:(PDADMAC/TALH)n,n代表重複的次數),以SEM觀察,(PDADMAC/TALH)1殼層厚度約為57 nm,(PDADMAC/TALH)5殼層厚度約為165 nm;從TEM觀察,前述(PDADMAC/TALH)n分別估計殼層厚度為63 nm與189 nm,但是(PDADMAC/TALH)5之機械強度似乎不是很好,出現破球的機高達3.8%;從FTIR的觀察中發現在波數465-795cm-1的穿透峰值隨溫度上升而增加,可能為Ti-OI伸展與Ti-OII彎曲特性峰所造成;從TEM觀察與熱重分析中發現經過550oC熱處理後可形成中空二氧化鈦微球,且從顯微外觀圖中發現吾人所合成出的粒子尺寸均一性佳。由吾人研究中所使用的模板合成方法,應可藉由改變核心基材的形狀與尺寸大小,來達到控制所合成的中空結構之形狀與尺寸。zh_TW
dc.description.abstractThis research synthesized hollow TiO2 microspheres via hydrothermal method together with colloidal organic latex spheres as a sacrificial template. The organic latex particles of uniform shape and size were coated with layers of titanium precursors hydrothermally, and effects of dispersants of various natures on the synthesized TiO2 hollow micro-spheres were examined. Form our experimented results, TiO2 hollow microspheres can be synthesized with and without the dispersants. Nonetheless, the yield for “good” hollow microspheres is different. When dispersant was not uesd, probability of the broken hollow microspheres was 1.55%. When nonionic dispersant TX-100 was used, probability for the formation of broken hollow microspheres was 2.19%. When anionic dispersant PSS was added, probability for the broken hollow microspheres was 1.6%. Finally, when cationic dispersant PDADMAC was added the probability reduced to 0.22%. By use of the layer-by-layer method, (PDADMAC/TALH)5 with multiple PDADMAC/TALH coatings were synthesized, in which (PDADMAC/TALH)n, n stands for the number of repeated adsorption of PDADMAC/TALH. From SEM, the shell thickness of (PDADMAC/TALH)1 was 57 nm, (PDADMAC/TALH)5 was 165 nm. From TEM, the shell thickness of n=1 was 63 nm, and n=5 was 189 nm. The mechanical strength of (PDADMAC/TALH)5 seems to be low, so that the probability of the broken hollow microspheres was 3.8%. The transmittance peak value at 465-795 cm-1 was increased by increasing temperature from FTIR analysis, arising from the characteristic peaks of Ti-OI stretch and Ti-OII bend. Hollow TiO2 spheres can be synthesized after thermal treating in 550oC by TEM and TG/DTA analyses. The particles have uniform size. In this study, synthesis of hollow microspheres can been control in terms of their shape and size, by changing core.en_US
dc.description.tableofcontents第一章 緒論………………………………………………………………1 第二章 文獻回顧與研究動機……………………………………………3 2-1 水解法合成中空微球………………………………………… 3 2-2 層接層法合成中空微球……………………………………… 4 2-3 溶膠-凝膠法合成中空微球………………………………… 6 2-4 乳液法合成中空微球………………………………………… 7 2-5 二氧化鈦粉體的合成………………………………………… 8 2-6 研究動機………………………………………………….. ……..9 第三章 實驗方法與分析儀器……………………………………….. 10 3-1 實驗藥品…………………………………………………… 10 3-2 製程儀器設備……………………………………………… 11 3-3 實驗流程…………………………………………………… 12 3-4 分析儀器…………………………………………………… 13 3-4-1 動態光散射粒徑分析…………………………………… 13 3-4-2 場發射掃描式電子顯微結構分析……………………… 14 3-4-3 傅立葉轉換紅外線光譜分析…………………………… 14 3-4-4 熱重與熱差分析………………………………………… 14 3-4-5 穿透式電子顯微鏡微結構分析……..………………… 14 3-4-6 比表面積分析儀……………………………………….... 15 第四章 結果與討論…………………………..……………………...… 16 4-1 起始核心材料……………………..……………………...… 16 4-1-1 核心材料之微結構……………..………………………….16 4-1-2 核心材料之熱分析………………..……………………... 17 4-1-3 核心材料的等電位點……………..……………………... 18 4-1-4 核心材料之紅外線光譜分析…..…………..…………... 19 4-2 合成中空二氧化鈦微球……..…………………..………... 20 4-2-1 形成二氧化鈦核殼結構之機制………………………... 20 4-2-2 熱重分析………………..…..…………………………... 20 4-2-3 二氧化鈦中空微球之顯微外觀與穿透影像…………... 22 4-2-4 傅立葉轉換紅外線光譜儀分析…………………….…. 25 4-2-5 EDS成份、SAD成份分析與XRD晶相分析……….. 26 4-2-6 比表面積分析………………………………..………… ..29 4-3 分散劑種類對合成二氧化鈦中空微球之影響……………... 30 4-3-1 不同分散劑對合成品質的影響…………………..….... 30 4-3-2 PADAMAC/TALH多層結構..…………...……………….33 第五章 結論……………………………..………………………………...41 參考文獻 ..……..…..…………………..……………………………………42zh_TW
dc.language.isoen_USzh_TW
dc.publisher材料工程學系所zh_TW
dc.subjectTitanium dioxiseen_US
dc.subject二氧化鈦zh_TW
dc.subjectHollow spheresen_US
dc.subjectLayer-by-layer methoden_US
dc.subject中空微球zh_TW
dc.subject層接層法zh_TW
dc.title利用膠體模板製備中空二氧化鈦微球之研究zh_TW
dc.titleSynthesis of TiO2 Hollow Microsphere by colloidal templatingen_US
dc.typeThesis and Dissertationzh_TW
Appears in Collections:材料科學與工程學系
文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.