Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11079
標題: 聚吡咯/氧化鐵/奈米碳管複合材料之製備 與其電磁性質研究
Preparation and electrical-magnetic properties of Polypyrrole/magnetite/carbon nanotubes composites
作者: 顏湘婕
Yen, Shiang -Jie
關鍵字: polypyrrole
聚吡咯
magnetic particle
electrical-magnetic properties
奈米磁性顆粒
電磁性
出版社: 材料工程學系所
引用: 〔1〕D. Chapman, R.J. Warm, A. G. Fitzgerald, A. D. Yoffe, J. Chem. Soc. Faraday Trans., 294 (1964) 60. 〔2〕H. Shirakawa, E.J. Louis, A.G. MacDiarmid, C.K. Chiang, A.J. Heeger, J. Chem. Soc. Chem. Commun., 16 (1977) 578. 〔3〕J.C. Huang, Adv. Polym. Tech., 21 (2002) 299. 〔4〕I.K. Varma, G. Gupta, C.S. Sidhu, Macromol. Symp., 164 (2001) 401. 〔5〕M. Omastova, M. Trchova, J. Pionteck, J. Prokes, J. Stejskal, Synyh. Met., 143 (2004) 153. 〔6〕R. Gangopadhyay, A. De, Chem. Mater., 12 (2000) 608. 〔7〕S.J. Komarni, Mater. Chem., 2 (1982) 1219. 〔8〕廖建勛, 工業材料, 125期, 1997年, 108頁. 〔9〕N. Toshima, S. Hara, Prog. Polym. Sci., 20 (1995) 164. 〔10〕B.R. Saunders, R.J. Fleming, K. Murray, Chem. Mater., 7 (1995) 1082. 〔11〕J. Deng, Y. Peng, C. He, X. Long, P. Li, A. S C Chan, Polym. Int., 52 (2003) 1182. 〔12〕K. Suri, S. Annapoorni, R.P. Tandon, N.C. Mehra, Synth. Met., 126 (2002) 137. 〔13〕宋狄文, 單一分布Fe3O4奈米粒子之合成與磁性質, 遠東技術學院機械工程系碩士論文, 2005年. 〔14〕S. Iijima, Nature, 354 (1991) 56. 〔15〕Z. Zhang, L. Qu , G. Shi, J. Mate. Chem., 13 (2003) 2858. 〔16〕S. Radhakrishnan, C. Saujanya, P. Sonar, I.K. Gopalkrishnan, J. V. Yakhmi, Polyhedron, 20 (2001) 1489. 〔17〕A. Chen, H. Wang, B. Zhao, X. Li, Synth. Met., 139 (2003) 411. 〔18〕W. Chen, X. Li, G. Xue, Z. Wang, W. Zou, Appl. Surf. Sci., 218 (2003) 215. 〔19〕B. Wessling, Synth. Met., 1 (1991) 119. 〔20〕D.M. Collard, M.S. Stoakes, Chem. Mater., 6 (1994) 850. 〔21〕G. Zotti, S. Zecchin, G. Schiavon, A. Berlin, Chem. Mater., 14 (2002) 3607. 〔22〕G. Sonmez, I. Schwendeman, P. Schottland, K. Zong, J.R. Reyonlds, Macromolecules, 36 (2003) 639. 〔23〕J.C. Thieblemont, A. Brun, J. Marty, M.F. Pianche, P. Calo, Polym., 36 (1995) 1605. 〔24〕K. Nishino, M. Fujimoto, O. Ando, H. Ono, T. Murayama, J. Appl. Electrochem., 26 (1996) 425. 〔25〕C. Cassignol, P. Olivier, A. Ricard, J. Appl. Polym. Sci., 70 (1998) 1557. 〔26〕E.J. Oh, K.S. Jang, A.G. MacDiarmid, Synth. Met., 125 (2002) 267. 〔27〕N. Toshima, S. Hara, Prog. Polym. Sci., 20 (1995) 155. 〔28〕N. Ballav, M.J. Biswas, J. Appl. Polym. Sci., 96 (2005) 1483. 〔29〕J.Y. Lee, D.Y. Kim, C.Y. Kim, Synth. Met., 74 (1995) 103. 〔30〕K.T. Song, J.Y. Lee, D.H. Kim, S.Y. Kim, C.Y. Kim, Synth. Met., 110 (2000) 57. 〔31〕J. Joo, J.K. Lee, J.S. Baeck, K.H. Kim, E.J. Oh, J. Epstein, Synth. Met., 117 (2001) 45. 〔32〕Y. Kudoh, Synth. Met., 79 (1996) 17. 〔33〕Y. Kudoh, K. Akami, Y. Matsuya, Synth. Met., 95 (1998) 191. 〔34〕Y. Shen, M. Wan, Synth. Met., 96 (1998) 127. 〔35〕J. Liu, M. Wan, J. Mater. Chem., 11 (2001) 404. 〔36〕M. Omastova, J. Pionteck, M. Trchova, Synth. Met., 135 (1998) 437. 〔37〕D. Stanke, M.L. Hallensleben, L. Toppare, Synth. Met., 72 (1995) 89. 〔38〕R. Turcu, M. Brie, G. Leising, V. Tosa, A. Mihut, A. Niko, A. Bot, Appl. Phys. A, 67 (1998) 283. 〔39〕I. Mogi, K. Watanabe, M. Motokawa, Physica B, 246 (1998) 412. 〔40〕H.C. Kang, K.E. Geckeler, Polymer, 41 (2000) 6931. 〔41〕M. Omastova, M. Trchova, J. Kovarova, J. Stejskal, Synth. Met., 138 (2003) 447. 〔42〕J. Jang, H. Yoon, Adv. Mater., 24 (2003) 2088. 〔43〕M.D. Migahed, T. Fahmy, M. Ishra, A. Barakat, Polymer Testing, 23 (2004) 361. 〔44〕A. De, A. Das, S. Lahiri, Synth. Met., 144 (2004) 303. 〔45〕K.S. Jang, H.C. Ko, B. Moon, H. Lee, Synth. Met., 150 (2005) 127. 〔46〕Z. Qi, P.G. Pickup, Chem. Mater., 9 (1997) 2934. 〔47〕Y. Shen, M. Wan, J. Polym. Sci. A, 37 (1998) 1443. 〔48〕J. Liu, M. Wan, J. Polym. Sci. A, 39 (2001) 997. 〔49〕Y. Yang, M. Wan, J. Mater. Chem., 11 (2001) 2022. 〔50〕J. Jang, J.H. Oh, Chem.Commun., (2002) 2200. 〔51〕S.D. Champagne, J. Duchet, R. Legras, Synth. Met., 101 (1999) 20. 〔52〕J. Jang, H. Yoon, Chem. Commun., (2003) 720. 〔53〕J. Jang, X.L. Li, J.H. Oh, Chem. Commun., (2004) 794. 〔54〕K. Boukerma, M. Omastova, P. Fedorko, M.M. Chehimi, Appl. Surf. Sci., 249 (2005) 303. 〔55〕林詩翔, 聚吡咯/多璧奈米碳管複合材料之製備與物性研究, 國立中興大學材料工程系碩士論文, 2005年. 〔56〕K. Cheah, M.Forsyth, V.-T. Truong, Synth. Met., 94 (1998) 215. 〔57〕成會明 編著, 奈米碳管, 五南圖書出版有限公司, 2004年2月. 〔58〕S. Sun, H. Zeng, D.B. Robinson, S. Raoux, P.M. Rice, S.X. Wang, G. Li, J. Am. Chem. Soc., 126 (2004) 273. 〔59〕O. Jarjayes, P.H. Pries, G. Bidan, Synth. Met., 69 (1995) 343. 〔60〕R. Gangopadhyay, A. De, European Polymer Journal, 35 (1999) 1985. 〔61〕J. Liu, M. Wan, J. Polym. Sci. A, 38 (2000) 2734. 〔62〕F. Yan, G. Xue, J. Chen, Y. Lu, Synth. Met., 123 (2001) 17. 〔63〕J. Deng, X. Ding, W. Zhang, Y. Peng, J. Wang, Polym., 43 (2002) 2179. 〔64〕X.G. Li, S. Takahashi, K. Watanabe, Y. Kikuchi, M. Koishi, Power Technology, 133 (2003) 156. 〔65〕A. Chen, H. Wang, X. Li, Synth. Met., 145 (2004) 153. 〔66〕K. Sunderland, P. Brunetti, L. Spinu, J. Fang, Z. Wang, W. Lu, Mater. Lett., 58 (2004) 3136. 〔67〕R. Turcu, I. Pana, O. Giurgiu, L. Aldea and B. Barz, Mol. Cryst. Liq. Cryst., 417 (2004) 235. 〔68〕X. Liu, Y. Guan, Z. Ma, H. Liu, Langmuir, 20 (2004) 10278. 〔69〕O. Yavuz, M.K. Ram, M. Aldissi, P. Poddar, H. Srikanth, Synth. Met., 151 (2005) 211. 〔70〕S.C. Tsang, Y.K. Chen, M.L.H. Green, Nature, 372 (1994) 159. 〔71〕R.M. Lago, S.C. Tsang, M.L.H. Green, J. Chem. Soc. Chem. Commun., (1995) 1355. 〔72〕H. Hiura, T.W. Ebbesen, K. Tanigaki, Adv. Mater., 7 (1995) 275. 〔73〕J. Liu, A.G. Rinzler, H. Dai, J.H. Hafner, R.K. Bradley, P.J. Boul, A. Lu, T. Iverson, K. Shelimov, C.B. Huffman, F.R. Macias,Y.S. Shon, T.R. Lee, D.T. Colbert, R.E. Smalley, Science, 280 (1998) 1253. 〔74〕M.A, Hamon, J. Chen, H. Hu, Y. Chen, M.E. Itkis, A.M. Rao, P.C. Eklund, R.C. Haddon, Adv. Mater., 11 (1999) 834. 〔75〕S. Niyogi, M.A. Hamon, H. Hu, B. Zhao, P. Bhowmik, R. Sen, M.E. Itkis, R.C. Haddon, Acc. Chem. Res., 35 (2002) 1105. 〔76〕W. Huang, Y. Lin, S. Taylor, J. Gaillard, A.M. Rao, Y.P. Sun, Nano Lett., 2 (2002) 231. 〔77〕Y.P. Sun, K. Fu, Y. Lin, W. Huang, Acc. Chem. Res., 35 (2002) 1096. 〔78〕Y. Lin, S. Taylor, H. Li, K.A. Shiral Fernando, L. Qu, W. Wang, L. Gu, B. Zhou, Y.P. Sun, J. Mater. Chem., 14 (2004) 527. 〔79〕M.J. O’Connell, S.M. Bachilo, C.B. Huffman, V.C. Moore, M.S. Strano, E.H. Haroz, K.L. Rialon, P.J. Boul, W.H. Noon, C. Kittrell, J. Ma, R.H. Hauge, R.B. Weisman, R.E. Smalley, Science, 297 (2002) 593. 〔80〕V.C. Moore, M.S. Strano, E.H. Haroz, R.H. Hauge, R.E. Smalley, Nano Lett., 3 (2003) 1379. 〔81〕J. Zhu, M. Yudasaka, M. Zhang, S. Iijima, J. Phys. Chem. B, 108 (2004) 11317. 〔82〕H. Tokoro, S. Fujii, T. Oku, Diamond and Related Materials, 13 (2004) 1270. 〔83〕C.T. Kuo, C.H. Lin, A.Y. Lo, Diamond and Related Materials, 12 (2003) 799. 〔84〕B. Liu, L. Wei, Q. Ding, J. Yao, Journal of Crystal Growth, 277 (2005) 293. 〔85〕Q. Xiao, X. Zhou, Electrochim. Acta., 48 (2003) 575. 〔86〕Y.M. Jin, J.E. Jung, Y.J. Park, J.H. Choi, D.S. Jung, H.W. Lee, S.H. Park, N.S. Lee, J. Appl. Phys., 92 (2002) 1065. 〔87〕M. Huges, G.Z. Chen, M.S.P. Shaffer, D.J. Fray, A.H. Windle, Composites Sci. Techn., 64 (2004) 2325. 〔88〕P.M. Ajayan, O. Stephan, C. Colliex, D. Trauth, Science, 265 (1994) 1212. 〔89〕M.S.P. Shaffer, A.H. Windle, Adv. Mater., 11 (1999) 937. 〔90〕B.P. Grady, F. Pompeo, R.L. Shambaugh, D.E. Resasco, J. Phys. Chem. B, 106 (2002) 5852. 〔91〕S.A. Curren, P.M. Ajayan, W.J. Blau, D.L. Carroll, J.N. Coleman, A.B. Dalton, A.P. Davey, A. Drury, B. McCarthy, S. Maier, A. Strevens, Adv. Mater., 10 (1998) 1091. 〔92〕E. Kymakis, G.A. Amaratunga, J. Appl. Phys. Lett., 80 (2002) 112. 〔93〕J. Fan, M. Wan, D. Zhu, B. Chang, Z. Pan, S. Xie, J. Appl. Polym. Sci., 74 (1999) 2605. 〔94〕J. Fan, M. Wan, D. Zhu, B. Chang, Z. Pan, S. Xie, Synth. Met., 102 (1999) 1266. 〔95〕G.Z. Chen, M.S.P. Shaffer, D. Coleby, G. Dizon, W. Zhou, D.J. Fray, A.H. Windle, Adv. Mater., 12 (2000) 522. 〔96〕K. Jurewicz, S. Selpeux, V. Bertagna, F. Beguin, E. Frackowiak, Chem. Phys. Lett., 347 (2001) 36. 〔97〕J.H. Chen, Z.P. Huang, S.X. Yang, W.Z. Li, J.G. Wen, Z.F. Ren, Synth. Met., 125 (2002) 289. 〔98〕X. Zhang, J. Zhang, R. Wang, T. Zhu, Z. Liu, ChemPhysChem., 5 (2004) 998. 〔99〕X. Zhang, Z. Lu, M. Wen, H. Liang, J. Zhang, Z. Liu, J. Phys. Chem. B, 109 (2005) 1101. 〔100〕K.H. An, S.Y. Jeong, H.R. Hwang, Y.H. Lee, Adv. Mater., 16 (2004) 1005. 〔101〕H.T. Ham, Y.S. Choi, N. Jeong, I.J. Chung, Polym., 46 (2005) 6308. 〔102〕J. Wang, J. Dai, T. Yarlagadda, Langmuir, 21 (2005) 9. 〔103〕J. Wang, M. Musameh, Analytica Chimica Acta, 539 (2005) 209. 〔104〕G. Han, J. Yuan, G. Shi, F. Wei, Thin Solid Films, 474 (2005) 64. 〔105〕G. Cheng, J. Zhao, Y. Tu, P. He, Y. Fang, Analytica Chimica Acta, 533 (2005) 11. 〔106〕S. Skaarup, K. West, B. Zachau-Christiansen, T. Jacobsen, Synth. Met., 51 (1992) 267. 〔107〕J. Aguilar-Hernandez, K. Protje-Kamloth, Phys. Chem. Chem. Phys., 1 (1999) 1735.
摘要: 聚吡咯 (polypyrrole, PPy)為本質型導電高分子,因具有良好的導電性,環境穩定性與相對容易合成等優點,因此,常用來作為感測器、電子元件等方面應用研究。根據不同的製備方法與摻雜程度,所製備之PPy導電度會有所不同,一般介於10¯³~10² S/cm之間。在本研究當中,希望能夠製備出同時具有電性與磁性之高分子複合材料,磁性方面以添加奈米磁性顆粒Fe3O4,本研究中製備單一粒徑分散之Fe3O4奈米顆粒,能達到容易精準控制且兼具獨特尺度影響特性之探討。在提升導電度方面,我們利用奈米碳管 (carbon nanotubes, CNTs)優異的電性、機械性質等特性,來改善PPy複合材料的導電度與其他物理性質,為了在添加奈米碳管的同時,仍擁有電與磁的特性,我們將Fe3O4分散於表面改質的奈米碳管上,其目的可達到良好的分散性,並且添加界面活性劑AOT,也能夠有效的使奈米碳管在PPy基材中均勻分散。因此,在本研究中,針對PPy與Fe3O4複合材料,PPy、Fe3O4與奈米碳管複合材料,不同Fe3O4含量與表面分散有Fe3O4之奈米碳管含量,進行複合材料的型態上與物理性質之分析。 在PPy與Fe3O4複合材料中,當Fe3O4大小為4 nm含量增加至24 wt%時,型態上會由圓球聚集的情形轉變為PPy自組裝為管狀結構,而Fe3O4大小為6 nm與8 nm時,隨著Fe3O4含量增加,型態上則都是圓球聚集的情形,圓球的大小會隨著添加量增加而有減小的趨勢。由XRD結果得知,Fe3O4 4 nm、6 nm與8 nm,含量要到達30 wt%時,才會有較明顯的Fe3O4特性峰,TEM結果顯示出,Fe3O4在PPy中的分布情形,導電度隨著Fe3O4含量增加,導電度上升。FTIR與Raman光譜圖則顯示出,添加Fe3O4會使得原來PPy的特性峰產生位移,表示Fe3O4的添加影響了PPy的結構。而在磁性方面,在Fe3O4較高含量時,呈現超順磁的特性。 在PPy、Fe3O4與奈米碳管複合材料中,在相同的界面活性劑AOT濃度下,所製備出的複合材料,型態上則呈現核殼結構 (core-shell structure),隨著表面分散有不同大小Fe3O4的奈米碳管含量增加,PPy披覆在奈米碳管表面的厚度不同,由TEM觀察得到披覆厚度範圍在70-130 nm左右,XRD的分析結果則發現,當添加量為2.64 wt%的奈米碳管與0.8 wt% 4 nm、6 nm與8 nm Fe3O4時,有較明顯的奈米碳管特性峰,皆擁有最佳的導電度,分別為67.114 S/cm、87.719 S/cm與64.516 S/cm。在FTIR與Raman光譜圖中,隨著奈米碳管與Fe3O4的添加,PPy原來的特性峰也產生了位移的現象,表示奈米碳管與Fe3O4會影響PPy分子鏈結構。磁性質方面,大致上呈現鐵磁的特性,複合材料主要受到奈米碳管的影響,當Fe3O4含量相對提高時,則會同時影響複合材料的磁性。
Polypyrrole (PPy), an intrinsic conducting polymer, contains relative ease of synthesis, excellent electrical conductivity and environmental stability and can be used as electrical sensor and device. The conductivity of PPy is dependent on its preparation and doping level and is in the range of 10³~10² S/cm. In this study, a new design of PPy composite possessing both electrical and magnetic properties can be synthesized by in situ chemical oxidative polymerization using uniformly Fe3O4 nanoparticle and carbon nanotube (CNT) to improve the properties of PPy. The morphology and physical properties of fabricated composites will be discussed. The morphology of PPy/Fe3O4 composites is spherical using various contents of 4 nm, 6 nm and 8 nm Fe3O4, except the content of 4 nm Fe3O4 is higher than 24 wt%. The diameter of PPy/Fe3O4 sphere is decreased as increasing the content of Fe3O4. The electrical conductivity of PPy/Fe3O4 composites increases as increasing the content of Fe3O4. The magnetic properties of PPy/Fe3O4 composites show superparamagnetism at high content of Fe3O4. For PPy/Fe3O4/CNT system, the morphology of fabricated composites shows core-shell structure with the thickness of PPy layer in the range of 70-130 nm. The conductivities of PPy/Fe3O4/CNT composite with 4 nm, 6 nm and 8 nm Fe3O4 are 67.114, 87.719, 64.516 S/cm, respectively, as the contents of CNT is 2.64 wt% and Fe3O4 0.8 wt%. The results of FTIR and Raman indicate the interaction between PPy, Fe3O4 and CNT occurs as the characteristic peaks shift. The magnetic properties of composites reveal ferromagnetic behavior, which is mainly influenced by CNT.
URI: http://hdl.handle.net/11455/11079
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.