Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11085
標題: 白金觸媒/奈米碳管電極材料之製備與研究
Preparation and characterization of carbon nanotubes-supported platinum nanoparticles for electrode materials
作者: 劉康宇
Liu, Kuang-Yu
關鍵字: platinum catalyst
白金觸媒
carbon nanotubes
electrode material
奈米碳管
電極材料
出版社: 材料工程學系所
引用: 1. S. Iijima, “Helical microtubules of graphitic carbon”, Nature, 1991, 354, p56. 2. N. Hamada, S Swada, and A. Oshiyama, “New One-Dimensional Conductor: Graphitic Microtubules”, Phys. Rev. Lett, 1992, 68, p1579 3. J. W. G. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley, C. Dekker, “Electronic structure of atomically resolved carbon nanotubes”, Nature, 1998, 391, p59. 4. J. Hone, M. Whitney, C. Piskoti, A. Zettl, “Thermal conductivity of single-walled carbon nanotubes”, Phys. Rev. B, 1999, 59, p2514. 5. M. A. Osman, D. Srivastava, “Temperature dependence of the thermal conductivity of single-wall carbon nanotubes”, Nanotechnology, 2001, 12, p21. 6. E. W. Wong, P. E. Sheehan, C. M. Lieber, “Nanobeam Mechanics:Elasticity, Strength, and Tounghness of Nanorods and Nanotubes”, Science, 1997, 277, p1971. 7. M. F. Yu, O. Lourie, M. Dyer, K. Moloni, T. Kelly, “Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load”, Science, 2000, 287, p637. 8. S. Iijima, C. Brabec, A. Maiti, J. Bernholc, “Structural flexibility of carbon nanotubes”, J. Chem. Phys., 1996, 104, p2089. 9. Z. Liu, X. Lin, J. Y. Lee, W. Zhang, M. Han, and L. M. Gan, “ Preparation and Characterization of Platinum-based Electrocatalysts on Multiwalled Carbon nanotubes for Proton Exchange Membrane Fuel Cells”, Langmuir, 2002, 18, p4054 10. W. Li, C. Liang, W. Zhou, J. Qiu, Z. Zhou, G. Sun and Q. Xin, “Preparation and Characterization of Multiwalled Carbon Nanotube-Supported Platinum for Cathode Catalysts of Direct Methanol Fuel Cells”, J. Phys. Chem. B, 2003, 107, p6292 11. G. Girishkumar, K. Vinodgopal and Prashant V. Kamat, “Carbon Nanostructures in portable Fuel Cells: Single-Walled Carbon Nanotube Electrodes for Methanol Oxidation and Oxigen Reduction”, J. Phys. Chem. B, 2004, 108, p19960 12. J. Kong, Nathan R. Franklin, C. Zhou, Michael G. Chapline, S. Peng, K. Cho, H. Dai, “Nanotube Molecular Wires as Chemical Sensors”, Science, 2000, 287, p622 13. S. J. Chung, S. H. Lim, C. H. Lee, J. Jiang, “Novel plasma chem.ical vapor deposition method of carbon nanotubes at low temperature for field emission display application”, Diamond and Related Material, 2001, 10 p248 14. K. Jurewicz, S.Delpeux, V. Bertagna, F. Beguin, E. Frackowiak, “Supercapacitors from nanotubes/polypyrrole composites”, Chem. Phys. Lett., 2001, 347, p36 15. H. Dai, J. H. Hafner, A. G. Rinzler, D. T. Colbert&Richard, E. Smalley, “Nanotubes as nanoprobesin scanning probe microscopy”, Nature, 1996, 384, p147 16. 林彥文,聚苯胺/奈米碳管導電複合材料之製備與電性研究,國立中興大學材料工程研究所,2004,p3 17. 盧敏彥,直接甲醇燃料電池電極觸媒,工業材料雜誌,193期,p76 18. 燃料電池論文集,1999,p.6 19. A. Hamnett, “Mechanism and electrocatalysis in the direct methanol fuel cell”, Catalyst Today, 1997, 38, p445 20. K. Sundmacher, T. Schultz, S. Zhou, K. Scott, M. Ginkel, E. D. Gilles, “Dynamics of the direct methanol fuel cell (DMFC): experiments and model-based analysis”, Chemical Engineering Science, 2001, 56, p333 21. 盧敏彥等,2003,工業材料, 202期, p134 22. S. D. Thompson, L.R. Jordan, M. Forsyth, 2001, J. Electrochimica Acta, 46, p1657 23. B. Gurau. R. Viswanathan, R. Liu, T. J. Lafrenz, K. L. Ley, E. S. Smotkin, E. Reddington, A. Sapienza, B. C. Chan, T. E Mallouk, and S. Sarangapani, “Structural and eElectrochemical Characterization of Binary, Ternary, and Quaternary Platinum Alloy Catalysts for Methanol Electro-oxidation”, J. Phys. Chem. B, 1998, 102, p9997 24. M. Götz and H.Wendt, “Binary and ternary anode catalyst formulations including the elements W, Sn and Mo for PEMFCs operated on methanol or reformate gas”, Electrochim. Acta, 2001, 31, p3637 25. K. W. Park, J. H. Choi, B. K. Kwon, S. A. Lee, Y. E. Sung, “Chemical and Electronic Effects of Ni in Pt/Ni and Pt/Ru/Ni Alloy Nanoparticles in Methanol Electrooxidation”, J. Phys. Chem. B, 2002, 106, p1869 26. Z. Zhou, S. Wang, W. Zhou, G. Wang, L.Jiang, W. Li, S. Song, J. Liu, G. Sn and Q. Xin, “Novel synthesis of highly active Pt/C cathode electrocatalyst for direct methanol fuel cell”, ChemComm. 2003, p394 27. F. Bonet, V. Delmas, S. Grugeon, R. H. Urbina, P. Y. Silvert and K. Tekaia-Elhsissn, “Synthesis of monodisperse Au, Pt, Pd, Ru, and Ir Nanoparticles in ethylene Glycol”, NanoStructured Materials, 1999, 11, p1277 28. M. Watanabe et al., Journal of Electroanalytical Chemistry, 1987, 229, p395 29. B. Yang, Q. Lu, Y. Wang, L. Zhuang, J. Lu, and P. Liu, “Simple and Low-Cost Preparation Method for Highly Dispersed PtRu/C Catlysts”, Chem. Mater., 2003, 15, p3552 30. T. J. Schmidt, M. Noeske, H. A. Gasteiger, R. J. Behm, P. Britz, W. Brijoux, H. Bonnemann, “Electrocatalytic Activity of PtRu Alloy Colloids for Co and CO/H2 Electrooxidation: Stripping Voltammetry and Rotating Disk Measurements”, Langmuir, 1997, 13, p2591. 31. 江松懋,奈米碳載體於燃料電池應用之研究,屏東科技大學材料工程研究所碩士論文,94年,p10 32. F. Bonet, V. Delmas, S. Grugeon, R. H. Urbina, P-Y. Silvert and K. Tekaia-Elhsissen, “Synthesis of monodisperse Au, Pt, Pd, Ru, and Ir Nanoparticles in ethylene Glycol”, NanoStructured Materials, 1999, 11, p1277 33. K. Tekaia-Elhsissen, F. Bonet, P-Y., and R. H. Urbina, “Finely divided platinum-gold alloy powders prepared in ethylene glycol”, Journal of Alloys and Compounds, 1999, 292, p96 34. E. Antolini and F. Cardellini, “ Formation of carbon supported PtRu alloys: an XRD analysis”, Journal of Alloys and Compounds, 2001, 315, p118 35. M. Chen and Y. Xing, “Polymer-Mediated Synthesis of Highly Dispersed Pt Nanoparticles on Carbon Black”, Langmuir, 2005, 21, p9334 36. R. Yu, L.Chen, Q. Liu, J. Lin K. L. Tan, S. C. Ng, H. S. O. Chan, G. Q. Xu, and T. S. Andy Hor, “Platinum Deposition on Carbon Nanotubes via Chemical Modification”, Chem. Mater., 1998, 10, p718 37. W. Li, C. Liang, W. Zhou, J. Qiu, Z. Zhou, G. Sun, and Q. Xin., “Preparation and Characterization of Multiwalled Carbon Nanotube-Supported Platinum for Cathode Catalysts of Direct Methanol Fuel Cells”, J. Phys. Chem. B, 2003, 107, p6292 38. W. Li, C. Liang, W. Zhou, J. Qiu, H. Li, G. Sun, and Q. Xin., “Homogeneous and controllable Pt particles deposited on multi-wall carbon nanotubes as cathode catalyst dor direct methanol fuel cells”, Carbon, 2004, 42, p423 39. Z. Liu, X. Lin, J. Y. Lee, W. Zhang, M. Han, and L. M. Gan, “ Preparation and Characterization of Platinum-based Electrocatalysts on Multiwalled Carbon nanotubes for Proton Exchange Membrane Fuel Cells”, Langmuir, 2002, 18, p4054 40. N. Rajalakhmi, H. Ryu, M. M. Shaijumon, S. Ramaprabhu, “Performance of polymer electrolyte membrane fuel cells with carbon nanotubes as oxygen reduction catalyst support material”, Journal of power sources, 2005, 140, p250 41. Y. Xing, “Synthesis and Electrochemical Characterization of Uniformly-Dispersed High Loading Pt Nanoparticles on Sonochemically-Treated Carbon nanotubes”, J. Phys. Chem. B., 2004, 108, p19255 42. A. Oberlin, M. Endo, T. Koyama, Carbon, 1976, 14, p133 43. H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, R. E. Smalley, “Bulkministerfullence”, Nature, 1985, 318, p162 44. T. W. Ebbesen, P. M. Ajayan, “Large-scale synthesis of carbon nanotubes”, Nature, 1992, 358, p220 45. S. Iijima, T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter”, Nature, 1993, 363, p603 46. D. S. Bethune, C. H. Kiang, M. S. Devries, G. Gorman, R. Savoy, J. Vazquez, “Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls”, Nature, 1993, 363, p605 47. 成會明、張勁燕,奈米碳管,2004,p535 48. R. Saito. M. Fujita, G. Dresselhaus, M. S. Dresselhaus, Appl. Rev. Lett., 1992, 60, p2204 49. M. Ouyang, J. Huang, and C. M. Leiber, “Fundamental Electronic Properties and Applications of Single-Walled Carbon Nanotubes”, Acc. Chem. Res., 2002, 35, p1018 50. H. Dai, “Carbon Nanotubes: Synthesis, Integration, and Properties”, Acc. Chem. Res., 2002, 35, p1035 51. M. Terrones, W. K. Hsu, H. W. Kroto, D. R. M. Walton, Topics in Current Chemistry, 1998, 199, p1 52. S. C. Tsang, Y. K. Chen, M. L. H. Green, “A simple chemical method of opening and filling carbon nanotubes”, Nature, 1994, 372, p159 53. R. M. Lago, S. C. Tsang, M. L. H. Green, “Filling carbon nanotubes with small palladium metal crystallites: the effect of the surface acid groups”, J. Chem. Soc., Chem. Commu., 1995, p1355 54. J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. Kelley Bradley, P. J. Boul, A. Lu, T. Iverson, K. Shelimov, C. B. Huffman, F. R. Macias, Y. S. Shon, T. R. Lee, D. T. Colbert, R. E. Smalley, “Fullerene Pipes”, Science, 1998, 280, p1253 55. A. Kuznetsova, D. B. Mawhinney, V. Naumenko, J. T. Yates Jr., J. Liu, R. E. Smalley, “Enhancement of adsorption inside of single-walled nanotubes: opening the entry ports”, Chem. Phys. Lett., 2000, 321, p292 56. T. Kyotani, S. Nakazaki, W. H. Xu, A. Tomita, “Chemical modification of the inner walls of carbon nanotubes ny HNO3 oxidation”, Carbon, 2001, 39, p771 57. J. Zhang, H. Zou, Q. Qing, Y. Yang, Q. Li, Z. Liu, X. Guo, and Z. Du., “Effect of Chemical Oxidation on Structure of Single-Walled Carbon Nanotubes”, J. Phys. Chem. B, 2003, 107, p3712 58. Z. Gu, H. Peng, R. H. Hauge, R. E. Smalley, and J. L. Margrave, “Cutting Single-Wall Carbon Nanotubes Through Fluorination”, Nano Lett, 2002, 2, p1009 59. S. Niyogi, M. A. Hamon, H. Hu, B. Zhao, P. Bhowmik, R. Sen, M. E. Itkis, and R. C. Haddon, “Chemistry of Single-walled Carbon nanotubes”, Acc. Chem. Res., 2002, 35, p1105 60. D. J. Guo, H. L. Li, “High Dispersion and Electrcatalytic Properties of Platinum on Functional Multi-Walled Carbon Nanotubes”, Electroanalysis, 2005, 17, p869 61. W. Huang, Y. Lin, S. Taylor, J. Gaillard, A. M. Rao, and Y. P. Sun, “Sonication-Assisted Functionalization and Solubilization of Carbon Nanotubes”, Nano Letters, 2002, 2, p231 62. V. C . Moore, M. S. Strano, E. H. Haroz, R. H. Hauge, and R. E. Smalley, “Individually Suspended Single-walled Carbon Nanotubes in Various Surfactants”, Nano Letters, 2003, 3, p1379 63. J. Zhu, M. Yudasaka, M. Zhang, and S. Iijima, “Dispersing Carbon Nanotubes in Water: A Noncovalent and Nanorganic Way”, J. Phys. Chem. B, 2004, 108, p11317 64. Z. Yao, H. W. C. Postma, L. Balents, and C. Dekker, “Carbon nanotube intermolecular junctions”, Nature, 1998, 402, 1, p273 65. D. B Mawhinney, V. Naumenko, A. Kuznetsova, and J. T. Yates, Jr., “Infrared Spectral Evidence for the Etching of Carbon Nanotubes: Ozone Oxidation at 298K”, J. Am. Chem. Soc., 2000, 122, p2383
摘要: 近年來全球對於能源需求越來越大,地球原有自然石化燃料卻日漸枯竭,造成原油價格日漸高漲,故世界各國無不基於環保與能源之考量,致力於開發具低環境污染的新能源,因此具有低排放污染、高轉換效率及穩定安全等優點的燃料電池,遂成為二十一世紀備受矚目的新能源技術。然而因為燃料電池膜電極組製備成本的昂貴遂使燃料電池無法迅速商品化,其中膜電極組中電極觸媒的高成本更直接影響生產成本。故本研究以材料觀點針對電極材料加以改善,以奈米碳管作為白金觸媒載體,期望藉由奈米碳管的優異性質,增進電極材料的效能並降低貴金屬白金觸媒的使用量,降低燃料電池整體成本。 奈米碳管擁有高長寬比、高比表面積及高導電導熱性等優異性質,使其成為電極材料中觸媒載體的新研究方向,然而奈米碳管易聚集且不易分散於溶劑的特性,使得奈米碳管應用面大大的降低,故本研究中,在不破壞奈米碳管原有優異特性與結構的前提下,利用硝酸加熱迴流法製備表面羧化奈米碳管,探討羧化處理時間對奈米碳管表面羧化程度的影響,進而以羧化奈米碳管作為白金觸媒載體製備白金觸媒/奈米碳管電極材料。 進行不同處理時間硝酸加熱迴流法製備羧化奈米碳管後,結果顯示羧化處理時間在1小時與12小時之間時,奈米碳管表面羧化程度有漸增的趨勢,但隨處理時間超過12小時後,碳管表面羧化程度增加趨勢則漸趨緩。而電極材料效能量測方面,以羧化碳管作為白金觸媒載體之電極材料效能與商用(Johnson Matthey)觸媒比較,以3小時羧化奈米碳管作為載體可得最佳白金觸媒分散性,電極效能約為商用觸媒1.43倍,並以3小時羧化奈米碳管作為載體之電極材料,7.2wt%白金觸媒荷載量之電極效能即可達到商用觸媒20wt%荷載量之電極效能,成功的製備高效能電極材料並減少白金觸媒使用量。研究結果並顯示出以羧化奈米碳管作為觸媒載體,可提升白金觸媒荷載量減少前驅物的浪費,與未羧化奈米碳管相較,相同白金前驅物添加量條件下,羧化奈米碳管可得較高白金觸媒荷載量,約增加10wt%。
As increasing demand day by day causes the gasoline gradually exhausted. Based on environmental protection and new energy development, new energy resource containing low pollution and high efficiency are required. From this point, fuel cell is an emerging technology that can meet these demands. However, high-price membrane electrode assembly (MEA) inhibits the development of fuel cell. Among these components in MEA, platinum (Pt)-based electrocatalyst leads the most cost. In this research, two main issues, the improvement of electrocatalyst performance and reduction of their cost, will be discussed. We select the multi-walled carbon nanotubes (MWNTs) as catalyst support to improve electrode material performance and reduce Pt utilization. MWNTs containing high aspect ratio and specific surface area, excellent thermal stability and outstanding electrical conductivity lead a new research topic as electrode material for fuel cell. However MWNTs tend to aggregate and are not easy to disperse in organic solvent, which limits their applications. In order to improve their solubility, the MWNTs were modified to contain carboxylic group at the interface of MWNT using HNO3 heat reflux. The effect of treated time using HNO3 heat reflux on the ratio of carboxylic group at MWNTs served a platinum support for electrode material will be discussed. From the results, the ratio of carboxylic group significantly increases as increasing treatment time and then gradually reaches a plateau after 12hr treatment. The C-V curves for the dispersion of 20wt% platinum nanoparticles with 3hr-treated cMWNT are 43% higher than that of commercial catalyst with the same weight ratio of Pt. At the same time, the C-V curves of 7.2wt% Pt-containing electrode material show similar performance compared to that of the electrode material with 20wt% commercial catalyst.
URI: http://hdl.handle.net/11455/11085
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.