Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11093
標題: 不同製程參數對以電漿輔助化學氣相沉積法 製備碳密封鍍層光纖性質的影響
The effects of process parameters on hermetically carbon-coated optical fibers prepared by plasma enhanced chemical vapor deposition method
作者: 卓意銘
Chou, Yi-Ming
關鍵字: hermetically carbon-coated optical fibers
碳密封鍍層光纖
PECVD
電漿輔助化學氣相沉積法
出版社: 材料工程學系所
引用: [1] K. C. Kao and G. A. Hockham, “Dielectric-fiber Surface Waveguides for Optical Fiber,” Proc. IEE, Vol. 133, p. 1151 (1966). [2] W. A. Gambling, “The Rise and Rise of Optical Fibers,” IEEE Journal on Selected Topics in Quantum Electronics , Vol. 6, p. 1084 (2000). [3] C. R. Kurkjian, J. T. Krause, and M. J. Matthewson, “Strength and fatigue of silica optical fibers,” Journal of Lightwave Technology, Vol. 7, p. 1360 (1989). [4] G. Keiser, Optical Fiber Communication, Second Edition, McGraw-Hill, New York (1991). [5] D. K. Mynbaev, L. L. Scheiner, Fiber-optic communications technology, Prentice Hall, New Jersey (2001). [6] 吳曜東, 光纖原理與應用, 全華科技圖書公司 (1997). [7] K. C. Kao, Optical Fiber System:Technology, Design, and Applications, McGraw-Hill, New York (1982). [8] 龔祖德, 光纖通訊技術, 全華科技圖書公司 (1997). [9] A. H. Cherin, An Introduction to Optical Fibers, McGraw-Hill, New York (1983). [10] M. M. Bubnov, E. M. Dianov, S. L. Semjonov, “Maximum value of fatigue parameter n for hermetically coated silica glass fibers,” Tech. Dig. Optical Fiber Communication Conf., paper ThF2 (1992). [11] K. E. Lu, G. S. Glaesemann, R. V. Vandewoestine, and G. Kar, “Recent Development in Hermetically Coated Optical Fiber,” Journal of Lightwave Technology, Vol. 6, p.240 (1988). [12] S. Aisenberg, “Properties and Application of Diamond-like Carbon Films,” Journal of Vacuum Science and Technology, Vol. 2, p. 369 (1984). [13] J. P. Powers, An Introduction to Fiber Optic Systems, Aksen Associates, Boston (1993). [14] C. R. Kurkjian, H. H. Yuce, and M. J. Matthewson, “Room temperature strength degradation of optical fibers,” in Optical network engineering and integrity, The International Society for Optical Engineering, Proc. SPIE 2611, p. 34 (1996). [15] G. M. Camilo, “Polymer coating degradation and dry technique in fiber optics,” in Optical fiber reliability and testing, The International Society for Optical Engineering, Proc. SPIE 3848, p. 55 (1999). [16] J. L. Armstrong, M. J. Matthewson, M. G. Juarez and C. Y. Chou, “The effect of the diffusion rates of optical fiber polymer coatings on aging,” Proc. SPIE, 3848, p. 62 (1999). [17] S. T Shiue and H. Ouyang, “Effect of polymeric coatings on the static fatigue of double-coated optical fibers,” Journal of Applied Physics, Vol. 90, p. 5759 (2001). [18] M. J. Matthewson, Fiber optics reliability and testing, Optical science and technology, Boston (1993). [19] C. A. Taylor, W. K.S. Chiu, “Characterization of CVD carbon films for hermetic optical fiber coatings,” Surface and Coatings Technology, Vol. 168, p. 1 (2003). [20] D. P. Dowling, K. Donnelly, T. P. O''Brien, A. O''Leary, T. C. Kelly, and W. Neuberger, “Application of Diamond-like Carbon Films as Hermetic Coatings on Optical Fibers,” Diamond and Related Materials, Vol. 5, p. 492 (1996). [21] Y. Katsuyama, N. Yoshizawa, and T. Yashiro, “Field Evaluation Result on Hermetically Coated Optical Fiber Cables for Practical Application,” Journal of Lightwave Technology, Vol. 9, p. 1041 (1991). [22] C. R. Wüthrich, C. A. P. Muller, G. R. Fox, H. G. Limberger, “High modulation efficiency using optical fiber coated with ZnO piezoelectric actuator,” International Conference on Solid-State Sensors and Actuators, Chicago, June p. 16-19 (1997). [23] John P. Powers, An Introduction to Fiber Optic Systems, Aksen Associates, Boston. (1993). [24] J. Robertson, “Improving the properties of diamond-like carbon,” Diamond and Related Materials, Vol. 12, p. 79 (2003). [25] 林宏謙, 以電漿輔助化學氣相沉積法製備碳密封鍍層光纖:不同氫氣/甲烷比例對碳薄膜光學性質之影響, 逢甲大學材料系碩士論文, p. 72 (2004). [26] A.C.Ferrari,J. Robertson, Phys. Rev. B 61 14095 (2000). [27] C. De Martino et al., “Determination of the sp3/sp2 ratio in a-C:H fulms by infrared spectrometry analysis,” Diamond and Related Materials, 4, p. 1210-1215 (1995). [28] E. Tomasella et al., “a-C:H films deposited by radio-frequency plasma:influence of gas composition on structure optical properties and stress levels,” Surface and Coatings Technology, 141, p. 286-896 (2001). [29] E. Tomasella et al., “Structural and mechanical properties of a-C:H thin films grown by RF-PECVD,” Diamond & Related Materials, 13, p. 1618–1624 (2004). [30] Catherine,Y., “In Diamond and Diamond-like Films Coatings,” 266, p. 193 (1991). [31] Alfred Grill, “Cold Plasma in Materials FABRICATION-From Fundamentals to Applications,” p. 206 (1994). [32] M. Lejeune, M. Benlahsen,R. Bouzerar, “Stress and structure relaxation in hydrogenated amorphous carbon films,” Applied Physics Letters, Vol. 84, p. 344 (2004). [33] A. von Keudell, M. Meier, C. Hopf, “Growth mechanism of amorphous hydrogenated carbon,” Diamond and Related Materials, Vol. 11, p. 969 (2002). [34] J. Schwan, S. Ulrich, V. Batori, H. Ehrhardt, “Raman spectroscopy on amorphous carbon films,” Journal of Applied Physics, Vol. 80, p. 440 (1996). [35] M. A. Tamor, W. C. Vassell, “Raman “fingerprinting” of amorphous varbon films,”, Journal of Applied Physics, Vol. 76, p. 3823 (1994). [36] R. O. Dillon, J. A. Woollam, V. Katkanant, “Use of Raman scattering to investigate disorder and crystallite formation in as-deposited and annealed carbon films,” Physical Review B, Vol. 29, p. 3482 (1984). [37] V. Paret, M.-L. Theye, “Influence of disorder on the density of p and r states in hydrogenated amorphous carbon,”Journal of Non-Crystalline Solids, 266-269, p. 750-754 (2000). [38] M. Lejeune et al., “Optical investigations and Raman scattering characterisation of carbon bonding in hard amorphous hydrogenated carbon films,”Thin Solid Films, 389, p. 233-238 (2001). [39] W.S. Choi et al., “The effect of RF power on tribological properties of the diamond-like carbon films,”Thin Solid Films, 475, p. 287-2890 (2005). [40] Ristein et al., “A comparative analysis of a-C:H by infrared spectroscopy and mass selected thermal effusion,”J. Appl. Phys., Vol. 84, p. 3836-3847 (1998). [41] J. Tauc, “Optical properties and electronic structure of amorphous germanium,” Physical Status Solid, Vol. 15, p. 627 (1966). [42] Racine et al.,“Effect of the hydrogen on the intrinsic stress in hydrogenated amorphous carbon films deposited from an electron cyclotron resonance plasma,”Appl. Phys. Lett., Vol. 73, p. 3226-3228 (1998). [43] J. Robertson, E. P. O’Reilly, “Electronic and atomic structure of amorphous carbon,” Physical Review B, Vol. 35, p. 2946 (1987). [44] J. Robertson, “Electronic processes in hydrogenated amorphous carbon,” Journal of Non-Crystalline Solids, Vol. 198-200, p. 615 (1996). [45] Rusli, J. Robertson, G. A. J. Amaratunga, “Photoluminescence behavior of hydrogenated amorphous carbon,” Journal of Applied Physics, Vol. 80, p. 2998 (1996). [46] Y. Hayashi, K. Hagimoto, H. Ebisu, M. K. Kalaga, T. Soga, M. Umeno, T. Jimbo, “Effect of Radio Frequency Power on the Properties of Hydrogenated Amorphous Carbon Films Grown by Radio Frequency Plasma-Enhanced Chemical Vapor Deposition,” Japen Journal Applied Physics, Vol. 39, p. 4088 (2000). [47] C.W. Chen, J. Robertson, “Nature of disorder and localization in amorphous carbon,” Journal of Non-Crystalline Solids, Vol. 227-230, p. 798 (1998). [48] J. Robertson, “Electronic and atomic structure of diamond-like carbon,” Semiconductor. Science Technology, Vol. 18, p. S12 (2003). [49] C. Oppedisano and A. Tagliaferro, “Relationship between sp2 carbon content and E04 optical gap in amorphous carbon-based materials,” Appl. Phys. Lett., Vol. 75 p. 3650-3652. (1999). [50] O.Durand-Drouhin et al., “The subimplantation model for hydrogenated amorphous carbon films deposited in electron cyclotron resonance plasma,”,Materials Science in Semiconductor Proceaaing, 4, p. 213-215 (2001). [51] O.Durand-Drouhin et al., “On the microstructural, optical and mechanical properties of hydrogenated amorphous carbon films deposited in electron cyclotron resonance plasma,”Diamond and Related Materials, 9, p. 752-755 (2000) [52] Kenji Yamamoto et al., “Relationship between Plasma Parameters and Carbon Atom Coordination in a-C:H Films Prepared by RF Glow Discharge Decomposition,” Japanese Journal of Applied Physics, 27 p. 1415-1421 (1988). [53] S.-H. Cho et al., “Physical and optical properties of plasma polymerized thin films deposited by PECVD method,”Surface and Coatings Technology, 174 –175, p. 1111–1115 (2003). [54] W. Chen, A.Y. Fadeev, M.C. Hsieh, D. Oner, Langmuir 15, p. 3395 (1999) [55] A. Nakajima, K. Hashimoto, T. Watannabe, K. Takai, G. Yamauchi, A.Fujishima, Langmuir, 16, p. 7044. (2000) [56] J. Bieo, C. Marzolin, D. Quere, Europhys, “Pearl drops,”47, p. 220-226. (1999). [57] R.N. Wenzel, Ind. Eng. Chem, 28, p. 988 (1936). [58] X.B. Yan et al.,“Water-repellency and surface free energy of a-C:H films prepared by heat-treatment of polymer precursor,” Diamond & Related Materials, xx, p. xxx–xxx (2005). [59] H.M. Shang et al., “Optically transparent superhydrophobic silica-based films,”Thin Solid Films, 472, p. 37–43 (2005). [60] S. T. Shiue and W. H. Lee, “Thermal Stresses of Carbon-coated Optical Fibers at Low Temperatures,” Journal of Materials Research, vol. 12, p. 2439 (1997). [61] T. Itoh, N. Mutsukura, “Mechanical properties of a-C:H thin films deposited by r.f. PECVD method,” Vacuum , 77, p.11–18 (2004). [62] L. G. Jacobsohn and F. L. Freire, Jr., “Influence of the plasma pressure on the microstructure and on the optical and mechanical properties of amorphous carbon films deposited by direct current magnetron sputtering,” J. Vac. Sci. Technol. A, Vol. 17, p. 2841-2849 (1999). [63] G. Capote et al., “Amorphous hydrogenated carbon films deposited by PECVD in methane atmospheres highly diluted in argon: effect of the substrate temperature,” Diamond and Related Materials, 13, p.1454–1458 (2004) [64] B. Dischler, A. Bubenzer, and P. koidl, “Bonding in hydrogenated hard carbon studied by optical spectroscopy,” Solid State Communications, Vol. 48, p. 105 (1983). [65] Dammika P. Manage, John M. Perz, Franco Gaspari, Emmanuel Sagnes, and Stefan Zukotynski, “Atmospheric aging and thermal annealing effects in a-C:H thin films,” Journal of Non-Crystalline Solids, Vol. 270, p. 247 (2000). [66] M. Benlahsen, B. Racine, K. Zellama, and G. Turban, “On the hydrogen incorporation, intrinsic stress and thermal stability of hydrogenated amorphous carbon films deposited from an electron cyclotron resonance plasma,” Journal of Non-Crystalline Solids, Vol. 283, p. 47 (2001). [67] J. K. Walters, D. M. Fox, T. M. Burke, O. D. Weedon, R. J. Newport, and W. S. Howells, “The effect of temperature on the structure of amorphous hydrogenated carbon,” Journal of Chemical Physics, Vol. 101, p. 4288 (1994). [68] E. Staryga and G. W. Bak, “Relation between physical structure and electrical properties of diamond-like carbon thin films,” Diamond and Related Materials, Vol. 14, p. 23 (2005). [69] Sattel, Robertson, and Ehrhardt, “Effects of deposition temperature on the properties of hydrogenated tetrahedral amorphous carbon”, J. Appl. Phys., Vol. 82, p. 4566-4576 (1997) [70] D.R. Tallant et al., “The thermal stability of diamond-like carbon,” Diamond and Materials, 4, p. 191-199. (1995) [71] Chhowalla et al., “Evolution of sp2 bonding with deposition temperature in tetrahedral amorphous carbon studied by Raman spectroscopy,” Appl. Phys. Lett., Vol. 76, p. 1419-1421 (2000).
摘要: 本文主要是以電漿輔助化學氣相沉積法製備碳密封鍍層光纖,研究不同的製程參數 (不同的射頻功率、工作壓力以及沉積溫度) 對於碳鍍層光纖性質的影響。結果顯示,當射頻功率小於200 W時,隨著射頻功率下降,碳氫活性物種的黏著係數下降並產生鬆散的碳鍍層結構。當射頻功率大於200 W時,隨著射頻功率上升結構中碳氫鍵角扭曲程度上升。而在射頻功率200 W時,碳鍍層有一最大的水接觸角。當工作壓力由0.12 torr增加至1.2 torr時,電漿中的氣體平均自由路徑變小,導致結構較為無序。當沉積溫度小於300°C時,隨著沉積溫度增加,熱能增加使碳鍍層結構有足夠能量重新組合,造成鍵角扭曲程度和缺陷量下降。當沉積溫度大於300°C時,碳鍍層結構轉變成石墨化現象。在沉積溫度300°C時,碳鍍層結構變成更緻密並擁有最大水接觸角90.1°。綜合水接觸角實驗以及低溫測試後表面形貌的結果發現,在射頻功率200 W、工作壓力0.12 torr以及沉積溫度300°C時所製備的碳鍍層擁有最佳的密封性質。
In this experiment, the effects of process parameters on hermetically carbon-coated optical fibers prepared by plasma enhanced chemical vapor deposition method are investigated. The process parameters include the radio frequency power, the working pressure and the deposition temperature. First, the experimental results indicate that if the radio frequency power is below 200 W, the stacking coefficient of hydrocarbon radicals is small and the coating structure is loose. Nevertheless, if the radio frequency power is above 200 W, the degree of the hydrocarbon bond angle distortion in the structure increases as the radio frequency power increases. When the radio frequency power is 200 W, the water contact angle of carbon coating reaches the maximum value. Second, if the working pressure increases from 0.12 torr to 1.2 torr, the mean free path of hydrocarbon radicals decreases in the plasma. As a result, the carbon coating structure becomes more disorder as the working pressure increases. Third, if the deposition temperature is below 300C, the bonding defects and degree of bond angle distortion decrease with increasing the deposition temperature. This is because coating structure acquires enough thermal energy. If the deposition temperature is over 300C, the coating film shifts to the graphite-like structure. When the deposition temperature is 300C, the carbon coating has more dense structure and the water contact angle of carbon coating reaches a maximum value 90.1. According to the result of the water contact angle and the surface morphology after the low-temperature test, it is found that the carbon coating prepared at radio frequency power 200 W, working pressure 0.12 torr and deposition temperature 300C is the best one for used as the hermetic optical fiber coating.
URI: http://hdl.handle.net/11455/11093
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.