Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11106
標題: 溫度對冷軋5083鋁-鎂-錳合金最佳超塑性之影響及其變形活化能之探究
Effect of Temperature on Optimum Superplastic Properties and the Activiation Energy of the Deformation in a Cold-Rolled 5083 Al-Mg-Mn Alloy
作者: 王閔儀
Wang, Ming-Yi
關鍵字: superplastic
超塑性
5083
Al-Mg-Mn
5083
鋁-鎂-錳
出版社: 材料工程學系所
引用: [1]. R. Verma, A.K. Ghosh, S. Kim, Mater. Sci. and Engineering A 191 (1995) 143-150 [2]. M. Katsukura:Light Metal Age:The International Magazine of the Light Metal Industry﹐April 2001﹐p. 70. [3]. 齊育金:世界鋁(合金)材料之需求趨勢極其主要應用之展望,礦冶學報,vol. 42﹐1998﹐p. 13 [4]. E. M. Taleff﹐P. J. Nevland﹐and P. E. Karjewski:Metall. Mater.Trans. ﹐vol. 32A﹐2001﹐p. 1119 [5]. 林淑貞,鄭忠志,陳連杰,張雲妃,工業材料,第145 期,(1999) p. 76 [6]. 史碩華,金屬工業,第32 卷,第6 期,(1998) p. 39. [7]. G.W. Hughes﹐S.H. Johnston and Ginty﹐Proceedings of an International Conference on Superplasticity and Superplastic Forming﹐Blaine﹐Washington﹐Aug.﹐1-4﹐1998﹐pp. 643-648 [8]. R. Kaibyshev, T. Sakai, F. Musin, I. Nikulin and H. Miura, Scripta Materialia 45 (2001) 1373-1380 [9]. M.A. Khaleel , H.M. Zbib, E.A. Nyberg, International Journal of Plasticity, 17 (2001) 277-296 [10]. C. Magnusson and U. Ohman:in the proceeding of Sheet Metals Forming Process Conference﹐Borleange﹐Sweden﹐11-13 June﹐1990﹐pp. 247-254 [11]. BC.H. Hamilt. Ren﹐on﹐and B. Ash:in the proceeding of the Fifth International Conference on Aluminum-Lithium Alloys﹐vol. 1﹐Williamsburg﹐Virginia﹐USA﹐27-31 Mar.﹐1989﹐pp. 131-139 [12]. S.J. Hales:in the proceeding of 28th International SAMPLE Technical Conference﹐Seattle﹐Washington﹐USA﹐4-7 Nov.﹐1996﹐pp. 623-635 [13]. A.J. Barnes,Proceedings of an International Conference:Superplasticity-Current Status and Future Potential﹐P.B. Berbon et al. eds., MRS, Nov. 29-Dec. 1, 1999, Boston, MA, pp. 207-221. [14]. R. Grimes﹐R.J. Dashwood and H.M. Flower﹐Materials Science Forum:the Proceedings of the Conference on Superplasticity in Advanced Materials﹐vol. 357-359﹐2001﹐pp. 357-362 [15]. M.V. Markushev, M.Yu. Murashkin, P.B. Prangnell, A. Gholinia and O.A. Maiorova, NanoStructured Materials, Vol 12 (1999), pp. 839-842 [16]. Z. Horita, T. Fujinami, M.Nemoto, T.G. Langdon, Journal of Materials Processing Technology, 117 (2001) 288-292 [17]. M. Furkawa﹐Z. Horita﹐ M. Nemoto﹐T.G. Langdon﹐Materials Science and Engineering﹐A vol. 324﹐2002﹐pp. 82-89 [18]. K. Higashi﹐Recent Progress in High-Strain-Rate Superplasticity﹐Proceedings of an International Conference on Thermomechanical Processing of Steels and Other Materials﹐THERMEC﹐97﹐T. Chandra and T. Sakai ed.﹐Jul. 7-11﹐University of Wollong ong﹐Australia﹐1997. pp.1795-1804 [19]. T. Komatsubara﹐and T. Tagata﹐US Patent No. 5﹐181﹐969﹐Jan.﹐26﹐1993 [20]. M. Matsuo﹐and T. Tagata﹐US Patent No. 5﹐540﹐791﹐Jan.﹐30﹐1996 [21]. D.J. Charkrabarti and R.D. Doherty﹐US Patent No. 6﹐063﹐210﹐May.﹐ 16﹐2000 [22]. Hajime Iwasaki ,Hiroyuki Hosokawa ,Takasuke Mori ,Tsutomu Tagata ,Kenji Higashi, Materials Science and Engineering, A252 (1998) 199-202 [23]. R. Verma, P. A. Friedman, A. K. Ghosh, S. Kim, and C. Kim, Metall. Mater. Trans. A,27A, (1996) p. 1889 [24]. H. Iwasaki, T. Mori, T. Tagata, M. Matsuo, and K. Higashi, Mater. Sci. Forum, 233-234,(1997) p. 293. [25]. ‘Glossary of terms used in metallic superplastic materials’JIS H 7007﹐Japanese Standards Association﹐Tokyo﹐1995﹐p. 3. [26]. L. Asccani: in Flight-Vehicle Materials﹐Structures and Dynamics-Assessment and Future Direction﹐A.K. Noor and S.L. Venneri﹐eds.﹐ASME﹐NY﹐1994﹐vol.1﹐p 139. [27]. D.Muljono, M. Ferry, D.P. Dunne, Mater. Sci. and Engineering A303 (2001) 90-99 [28]. V.A. Ivensen﹐Science of Sintering﹐vol. 10﹐1978﹐pp. 175-184 [29]. M. Matsuo﹐T. Tagata and N. Matsumoto﹐Proceedings of an International Conference on Thermomechanical Processing of Steels and Other Materials﹐THERMEC,97﹐T. Chandra and T. Sakai ed.﹐Jul. 7-11﹐University of Wollongong﹐Ausrtralia﹐1997﹐pp.1953-1959 [30]. D. Stephen:Designing for Superplastic Alloys﹐in NATO/AGARD Lec. Ser. No. 154﹐Nat. Tech. Inform. Serv.﹐Springfield﹐VA﹐1987﹐P. 7.4. [31]. M.A. Khaleel, K.I. Johnson, C.A. Lavender, M.T. Smith, and C.H. Hamilton, Scripta Materialia, Vol. 34 (1996), No. 9, 1417-1423 [32]. R.M. Cleveland, A.K. Ghosh, J.R. Bradley, Materials Science and Engineering A351 (2003) 228-236 [33]. 林裕棠,國立中興大學材料工程學研究所碩士論文,(2004),圖3-16 [34]. Y.N. Wang and J.C. Hung﹐Scripta Materialia, 48 (2003), 1117-1122 [35]. D. H. Bae and A.K. Ghosh﹐Acta mater﹐48(2000)1207-1224 [36]. Hajime Iwasaki﹐Hiroyuki Hosokawa﹐Takasuke Mori﹐Tsutomu Tagata﹐Kenji Higashi﹐Materials Science and Engineering A 252 (1998) 199-202 [37]. R. S. Mishra, T. R. Bieler, and A. K. Mukherjee, Acta Metall. Mater., 43, (1995) p. 877. [38]. R. B. McLellan and T. Ishikawa, J. Phys. Chem. Solids, 48, (1987) p. 603. [39]. C. W. Humphreys and N. Ridley, J. Mater. Sci., 12, (1997) p. 851. [40]. T. S. Lundy and J. F. Murdock, J. Appl. Phys., 33, (1962) p. 1671. [41]. H. J. Frost and M. F. Ashby, in Deformation-Mechanism Maps: the Plasticity and Creep of Metals and Ceramics, New York, Pergamon Press, (1982) p. 21. [42]. R. W. Balluffi, Phys. Stat. Sol., 42, (1970) p. 11.
摘要: 一般傳統超塑性的發展均在高溫(>0.5 Tm)、低速(<1x10-3 s-1)下進行,在一些金屬中都已有不錯的表現,但如果要推展超塑成形技術與工業界結合,不論高溫或低速都不符合成本及經濟效應。因此,本實驗針對5083 Al-Mg-Mn 軋延板材,一種價廉而可能被應用於超塑性成形大量製造之材料;於進行超塑變形前不經再結晶處理,並以快速升溫的加熱方式(約2分半到測試溫度),探討該材料於上述條件,分別於不同測試溫度及速率下變形,對晶粒結構與最佳超塑性之影響。 實驗結果顯示,省略一般超塑變形前所需的再結晶處理並利用快速升溫的加熱方式,試片於超塑變形前都能得到低於10μm之細晶粒等軸結構,且各測試溫度及速率下之延伸率,都能符合工業應用上所要求的延伸率設計,並於溫度500℃及應變速率1x10-3 s-1的條件,有一最佳延伸率(600%)。為了了解溫度對5083軋延板材最佳超塑性的影響,對各溫度條件下拉伸前後之金相組織與空孔分佈狀態作分析。發現當溫度為500℃時,其晶粒成長趨勢及aspect ratio,於成形過程中較為緩和,且只有在溫度為500℃,其軋延面孔洞分佈與大小,較為不明顯且細小。對5083鋁基材料之變形活化能分析結果顯示,合金在450~500℃時,活化能為90 kJ/mole;500~550℃時為128 kJ/mole,5個測試溫度之變形活化能不盡相同,顯示著,5083鋁合金對於溫度之敏感度,及不同溫度下所造成延伸率之差異。
Common superplastic deformation is conducted at high temperature and low strain rate, in which the performance in various metals is satisfying. However, conditions such as high temperature and low strain rate are not economically efficient, as to extend further applications for superplastic deformation technique in manufacturing processes. Therefore, this experiment aimed at the commercial 5083 (Al-Mg-Mn) alloy, which is cheap and a possible material to be applied in quantitative manufacture by superplastic forming. The objective is to investigate the effects of no-recrystallization before superplastic deformation and rapid heating have on the grain structure and optimum superplasticity, under various deformation temperatures and strain rates. The experimental results reveal that, by the method of no-recrystallization before deformation and rapid heating, the specimen has equiaxed grains under 10 μm in size before deformation, and the elongation rate under various testing temperatures and strain rates meets the industrial requirement. The optimum elongation rate was 600% at 500°C for 1x10-3 s-1. The microstructure and cavity distribution at different testing temperature were analyzed. It was found that at 500°C, the tendency of change in aspect ratio and of grain growth were moderate, and only at 500°C would the cavities on the rolling face be unobvious and tiny. The analyses also reveal that the activation energies of deformation are not exactly the same at each test temperature. The activation energy are 90 kJ/mole in the temperature range of 450-500°C, and 128 kJ/mole in the temperature range of 500-550°C. This shows that 5083 aluminum alloy is temperature sensitive and also helped to explain the difference in elongation rate under different testing temperatures.
URI: http://hdl.handle.net/11455/11106
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.