Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11110
標題: 多孔性磷酸鈣鹽之製備與特性分析
Preparation and characterization of porous calcium phosphate
作者: 林鴻志
Lin, Hung-Chih
關鍵字: microwave
微波
calcium phosphate
porous
BET
磷酸鈣
多孔性
BET
出版社: 材料工程學系所
引用: 1. 張慈映, “全球高齡化浪潮是危機,也是轉機”, 生技與醫療器材報導月刊, July, (2004), p.25. 2. 廖建仁, “生醫骨科陶瓷材料之發展與應用”, 化工資訊月刊, 第14卷, 第三期, 89年3月. 3. M. Aebi, P. Regazzoni,“Bone trans-plantation”, Spring Vrelag, Berlin Heidelberg, (1989). 4. M. Jarcho. Clin. Orthop. Relat. Res. 157 (1981), p. 259. 5. G. Daculsi, N. Passuti, S. Martin, C. Deudon, R.Z. Legeros and S. Raher, “Macroporous calcium phosphate ceramic for long bone surgery in humans and dogs. Clinical and histological study”, Journal of Biomedical Materials Research, 24, (1990), p.379-396. 6. G. H. Albee and H. F. Morrison, Annals of Surgery, 71, (1920), p.32. 7. W. F. Dejong, Rec. Tav. Chim., 45, (1926), p.415 8. C. S. Chai and B. Ben-Nissan, “Bioactive nanocrystalline sol-gel hydroxyapatite coating,” Journal of Materials Science: Materials in Medicine, 10, (1999), p.465-469. 9. F G. Daculsi, J. -M. Bouler, and R. Z. Legerost, “Adaptive crystal formation in normal and pathological calcifications in synthetic calcium phosphate and related biomaterials,” International Review of Cytology, 172, (1997), p. 129-191. 10. S. K. Yen, “Characterization electrolytic ZrO2 coating on AISI 316L stainless steel”, Journal of Electrochemical Society, 146, (1999), p. 1392-1397. 11. S. K. Yen, “The mechanism of electrolytic ZrO2 coating on commercial pure titanium”. Materials Chemistry and Physics, 63, (2000), p. 256-262. 12. S. K. Yen and C. M. Lin, “Characterization of electrolytic Al2O3/CaP composite coatings on pure titanium”, Journal of Electrochemical Society, 149, (2002), D79-D87. 13. S. K. Yen and C. M. Lin, “Cathodic reactions of electrolytic hydroxyapatite coating on pure titanium”,Materials Chemistry and Physics, 77, (2002), p. 70-76. 14. M. C. Kuo and S. K. Yen, “The process of electrochemical deposition hydroxyapatite coatings on biomedical titanium at room temperature”, Materials Science & Engineering C, 20, (2002), p.153-160. 15. S. K. Yen and T. Y. Huang, “Characterization of the electrolytic ZrO2 coating on Ti-6Al-4V”, Materials Chemistry and Physics, 6, (1998), p. 214-221. 16. H. C. Hsu and S. K. Yen, “Evaluation of metal ion release and corrosion resistance of ZrO2 thin coating on the dental Co-Cr-Mo alloys”, Dental Materials, 14, (1998), p.339-346. 17. S. K. Yen, M. J. Guo, and H. Z. Zhan, “Electrolytic ZrO2 coating on Co-Cr-Mo alloy of hipprosthesis”, Proceeding of the Second International Conference on Intelligent Processing and Manufacturing of Materials, Hawaii, U.S.A., 2, (1999), p.789-795. 18. S. K. Yen, M. J. Guo, and H. Z. Zan, “Characterization of electrolytic ZrO2 coating on Co-Cr-Mo implant alloys of hip prosthesis”, Biomaterials, 22, (2001), p.125-133. 19. S. K. Yen and S. W. Hsu, “Electrolytic Al2O3 coating on Co-Cr-Mo implant alloys of hip prosthesis”, Journal of Biomedical Materials Research, 54, (2001), p.412-418. 20. 顏秀崗, “生物鈍性無裂縫ZrO2 被覆於Co-Cr-Mo 合金之電解方法”, 中華民國專利第138232號. 21. 顏秀崗, “在鈷鉻鉬合金表面上形成HA/ZrO2 複合鍍層的方法”, 中華民國及美國專利申請中. 22. 顏秀崗, “生物鈍性無裂縫Al2O3 被覆於Co-Cr-Mo 合金之電解方法”. 中華民國發明專利發明第192836號. 23. S. K. Yen, S. H. Chiou, and S. P Lin, 2002,"Behaviour of Human Osteoblasts Cultured on Electrolytic ZrO2, HA and HA/ZrO2 Coated Ti-6Al-4V Alloy", Proceeding of the 3rd Asian International Symposium on Biomaterials and Drug Delivery Systems, Taipei, Taiwan p.76-80 24. C. M. Lin and S. K. Yen, “Characterization of Electrolytic TiO2 Coating on Ti for Biomedical Applications”, J. Electrochem. Soc., 151, (2004), D127-133. 25. 顏秀崗、林奇民、陳瑞龍、廖若溏, “骨母細胞在電解沉積HA/TiO2複合塗層上的貼附與生長”, 中華民國生物醫學工程學會2004 年年會論文集, NSC-LP-11 (2004). 26. 林奇民,顏秀崗, “Investigation of different Titanium surface treatments on in vitro osteoblast-like cell” 中國材料科學學會,2002 年年會論集, PD-7 (2002). 27. M. M. Black, R. Noort and P. J. Drury,“Medical application of biomaterials”, Phys. Technol., 13, (1982), p.50-65. 28. H. Klinkmann, H. W. Schmitt,“Haemodialysis and membrance biocompatibility”, Contr. Nephrol., 37, (1984), p.70-77. 29. Ayako Oyane, Yoshiro Yokoyama, Masaki Uchida and Atsuo Ito, “The formation of an antibacterial agent–apatite composite coating on a polymer surface using a metastable calcium phosphate solution”, Biomaterials, 27, (2006), p.3295-3303. 30. R.M. Shelton, Y. Liu, P.R. Cooper, U. Gbureck, M.J. German and J.E. Barralet, “Bone marrow cell gene expression and tissue construct assembly using octacalcium phosphate microscaffolds”, Biomaterials, 27, (2006), p.2874-2881. 31. Damien Le Nihouannen, Laurent Le Guehennec, Thierry Rouillon, Paul Pilet, Melitta Bilban, Pierre Layrolle and Guy Daculsi, “Micro-architecture of calcium phosphate granules and fibrin glue composites for bone tissue engineering”, Biomaterials, 27, (2006), p.2716-2722. 32. Hockin H. K. Xu and Carl G. Simon, Jr, “Fast setting calcium phosphate–chitosan scaffold: mechanical properties and biocompatibility”, Biomaterials, 26, (2005), p.1337-1348. 33. Jorrit-Jan Verlaan, F. Cumhur Oner and Wouter J.A. Dhert, “Anterior spinal column augmentation with injectable bone cements”, Biomaterials, 27, (2006), p.290-301. 34. A. Ratier , M. Freche , J. L. Lacout and F. Rodriguez, “Behaviour of an injectable calcium phosphate cement with added tetracycline”, International Journal of Pharmaceutics, 274, (2004), 261-268. 35. A. J. Khopade, S. Khopade and N. K. Jain, "Development of hemoglobin aquasomes from spherical hydroxyapatite cores precipitated in the presence of half-generation poly(amidoamine) dendrimer", Internat. J. Pharmac., 241, (2002), p.145-154. 36. H. Aoki, T. Kutsuno, W. Li and M. Niwa, "In vivo study on the reaction of hydroxyapatite-sol injected into blood", J. Mater. Sci. Mater. Med., 11, (2000), p.67-72. 37. C. M. Hilliard, S. Fletcher and G. C. T. Yeoh, " Calcium phosphate Transfection and Cell-Specific Expression of Heterologous Genes in Primary Fetal Rat Hepatocytes", Int. J. Biochem. Cell. Biol., 28, (1996), p. 639-650. 38. Y. W. Yang and J. C. Yang, "Calcium phosphate as a gene carrier: electron microscopy", Biomaterials, 18, (1997), p.213-217. 39. S. Y. Watanabe, A. M. Albsoul-Younes, T. Kawano, H. Itoh, Y. Kaziro, S. Nakajima and Y. Nakajima, "Calcium phosphate-mediated transfection of primary cultured brain neurons using GFP expression as marker: application for single neuron electrophysiology", Neurosci. Res., 33, (1999), p.71-78. 40. R. Arulanandam, A. Vultur and L. Raptis, “Transfection techniques affecting Stat3 activity levels”, Analytical Biochemistry, 338, (2005), p.83-89. 41. Antonio Rodriguez and Erik K. Flemington, “Transfection-Mediated Cell-Cycle Signaling: Considerations for Transient Transfection-Based Cell-Cycle Studies”, Analytical Biochemistry, 272, (1999), p.171-181. 42. Cheng Yiyun and Xu Tongwen, “Dendrimers as Potential Drug Carriers. Part I. Solubilization of Non-Steroidal Anti-Inflammatory Drugs in the Presence of Polyamidoamine Dendrimers”, European Journal of Medicinal Chemistry, 40, (2005), p.1188-1192. 43. Man Na, Cheng Yiyun, Xu Tongwen, Ding Yang, Wang Xiaomin, Li Zhenwei, Chen Zhichao, Huang Guanyi, Shi Yunyu and Wen Longping, “Dendrimers as potential drug carriers. Part II. Prolonged delivery of ketoprofen by in vitro and in vivo studies”, European Journal of Medicinal Chemistry, In Press, Corrected Proof, (2006). 44. M.Liu, K. Kono and J. M. J. Frecht, "Water-Soluble Dendrimer- Poly (ethylene glycol) Starlike Conjugates as Potential Drug Carriers", J. Polymer Sci, 37A, (1999), p.3492-3503. 45. Evagelos Bellis and George Kokotos, “Proline-modified poly(propyleneimine) dendrimer as catalysts for asymmetric aldol reactions”, Journal of Molecular Catalysis A: Chemical, 241, (2005), p.166-174. 46. Lindsey W. Beakley, Sarah E. Yost, Raymond Cheng and Bert D. Chandler, “Nanocomposite catalysts: dendrimer encapsulated nanoparticles immobilized in sol-gel silica”, Applied Catalysis A: General, 292, (2005), p.124-129. 47. N. J. Wells, A. Basso and M. Bradley, "Solid-Phase Dendrimer Synthesis", Biopolymer, 47, (1998), p.381-396. 48. J. C. Roberts, M. K. Bhalgat and R. T. Zear, "Preliminary biological evaluation of polyamidoamine(PAMAM) Starburst dendrimers", J. Biomed. Mater. Res., 30, (1996), p.53-65. 49. C. Kojima, K. Kono, K. Maruyama and T. Takagish, "Synthesis of Polyamidoamine Dendrimers Having Poly(ethylene glycol) Grafts and Their Ability To Encapsulate Anticancer Drugs", Bioconjugate Chem., 11, (2000), p. 910-917. 50. A. Slosarczyk, J. Szymura-Oleksiak and B. Mycek, “The kinetics of pentoxifylline release from drug-loaded hydroxyapatite implants”, Biomaterials, 21, (2000), p.1215-1221. 51. Vladimir S. Komlev, Serguei M. Barinov and Elena V. Koplik, “A method to fabricate porous spherical hydroxyapatite granules intended for time-controlled drug release”, Biomaterials, 23, (2002), p.3449-3454. 52. Jong-Shing Bow , Sz-Chian Liou and San-Yuan Chen, “Structural characterization of room-temperature synthesized nano-sized β-tricalcium phosphate”, Biomaterials, 25, (2004), p.3155-3161. 53. Jae-Kil Han, Ho-Yeon Song, Fumio Saito and Byong-Taek Lee, “Synthesis of high purity nano-sized hydroxyapatite powder by microwave-hydrothermal method”, Materials Chemistry and Physics, In Press, Corrected Proof, (2005). 54. 盧敏彥,黃俊傑,張美元,唐怡萱, “微型燃料電池用觸媒及載體”, 工業材料, 202期, 92年10月. p.129-136. 55. Clemson Advisory Board for Biomaterials “Definition of the world biomaterial”, The 6th Annual International Biomaterial Symposium, April 20-24, (1974). 56. J. B. Park and R. S. Lakes, “Biomaterials, An Introduction 2nd ed.”, Plenum Press, New York, (1992), p.2-3. 57. ASTM F-138, “Standard Specification for Wrought 18 Chromium-14 Nickel-2.5 Molybdenum Stainless Steel Bar and Wire for Surgical Implants”, Annual Book or ASTM Standards, American Society for Testing And Materials, Vol.3.01. 58. ASTM F-90, “Standard Specification for Wrought Cobalt-20 Chromium-15 Tungsten-10 Nickel Alloy for Surgical Implant Applications”, Annual Book or ASTM Standards, American Society for Testing And Materials, Vol.3.01. 59. ASTM F-67, “Standard Specification for Unalloyed Titanium for Surgical Implant Applications”, Annual Book or ASTM Standards, American Society for Testing And Materials, Vol.3.01. 60. ASTM F-136, “Standard Specification for Wrought Titanium-6 Aluminum-4 Vanadium ELI(Extra Low Interstitial) Alloy for Surgical Implants”, Annual Book or ASTM Standards, American Society for Testing And Materials, Vol.3.01. 61. J. B. Park, “Biomaterials Science and Engineering” Plenum Inc. (1990). 62. L. L. Hench and E. C. Ethridge, “Biomaterial” Academic Press. Inc. (1982). 63. 洪敏雄,林峰輝,王盈錦, ”生醫陶瓷” 陶瓷技術手冊(下) 中華民國產業科技發展協進會 (1994). 64. A. Ravaglioli and A. Krajewski, “Bioceramics and the human body”, London, Elsevier Applied Science (1992). 65. D. M. Roy, S. K. Linnehan,“ Hy-droxyapatite formed from coral skeletal carbonate by hydrothermal exchange”, Nature, 247, (1974), p.220-222. 66. A. Ravaglioli and A. Krajewski, ; with a foreword by Samuel F. Hulbert, “Bioceramics, materials, properties, applications”, London, Chapman & Hall (1992). 67. Takao Yamamuro, Larry L. Hench, June Wilson, “CRC handbook of bioactive ceramics”, Boca Raton, Fla., CRC press, (1990). 68. W. Cao and L. L. Hench, “Bioactive Materials”, Ceram. Int., 22, (1996), p.493-507. 69. L. L. Hench, R. J. Splinter, W. C. Allen, and T. K. Greenlee, “Bonding Mechanism at the Interface of Ceramic Prosthetic Materials”, J. Biomed. Mater. Res., 2, (1972) p.117-41. 70. Sergey V. Dorozhkin & Matthisa Epple, “Biological and medical significance of calcium phosphates”, Angew. Chem. Int. Ed., 41, (2002), p.3130-3146. 71. Boyde. A., Corsi. A., “Osteoconduction in large macroporous hydroxyapatite ceramic implants: evidence for a complementary integration and disintegration mechanism”, Bone, 24, (1999), p.579-589. 72. 董國忠, ”A Study of Immobilization of Bone Growth Factor on Calcium Phosphate Bioceramics as a Viable Bone Substitute”, 中原大學化學系博士論文, (2002). 73. Q. Liu, J. R. de Wijn, C. A. Van Blitterswijk., “A study on the grafting reaction of isocyanates with hydroxyapatite particles”, J. Biomed. Mater. Res., 40, (1998), p.358-364. 74. M. Bohner, F. Theiss, D. Apelt, W. Hirsiger, R. Houriet, G. Rizzoli, E. Gnos, C. Frei, J. A. Auer and B. von Rechenberg., “Compositional changes of a dicalcium phosphate dihydrate cement after implantation in sheep”, Biomaterials, 24, (2003), p.3463-3474. 75. Stephan Graham and Paul W. Brown, “Reactions of octacalcium phosphate to form hydroxyapatite”, Journal of Crystal Growth, 165, (1996), p.106-115. 76. Joseph D. Bronzino, “The biomedical engineering handbook”, Boca Raton, FL, CRC Press (2000). 77. A. Destainville, E. Champion, D., ”Synthesis, characterization and thermal behavior of apatitic tricalcium phosphate”, Materials Chemistry and Physics, 80, (2003), p.269-277. 78. S. Raynaud, E. Champion, D. Bernache-Assollant and P. Thomas, “Calcium phosphate apatites with variable Ca/P atomic ratio I. Synthesis, characterization and thermal stability of powders ”, Biomaterials, 23, (2002), p.1065-1072. 79. V. V. Silva and F. S. Lameiras, “Synthesis and characterization of composite powders of partially stabilized zirconia and hydroxyapatite ”, Materials Characterization, 45, (2000), p.51-59. 80. A. Bigi, G. Cojazzi, S. Panzavolta, A. Ripamonti, N. Roveri, M. Romanello, K. Noris Suarez and L. Moro, “Chemical and structural characterization of the mineral phase from cortical and trabecular bone”, J. Inorg. Biochem., 68, (1997), p.45-51. 81. LeGeros RZ., “Effect of carbonate on the lattice parameters of apatite”, Nature, 68, (1965), 206, p.403-4. 82. E. J. Blom, J. Klein-Nulend, J. G. C. Wolke, K. Kurashina, M. A. J. van Waas and E. H. Burger, “Transforming growth factor-β1 incorporation in an α-tricalcium phosphate/dicalcium phosphate dihydrate/tetracalcium phosphate monoxide cement: release characteristics and physicochemical properties ”, Biomaterials, 23, (2002), p.1261-1268. 83. Y. Sargin, M. Kizilyalli, C. Telli and H. Güler, “A new method for the solid-state synthesis of tetracalcium phosphate, a dental cement: X-ray powder diffraction and IR studies”, Journal of the European Ceramic Society, 17, (1997), p.963-970. 84. H. Hattori, Y. Iwadate, “Hydrothermal preparation of calcium hydroxyapatite powders ”, J. Am. Ceram. Soc., 73, (1990), p.1803-1805. 85. K. Ioku, S. Yamauchi, H. Fujimori, S. Goto and M. Yoshimura, “Hydrothermal preparation of fibrous apatite and apatite sheet”, Solid State Ionics, 151, (2002), p147-150. 86. Sumit Pramanik, Avinash Kumar Agarwal, K.N. Rai and Ashish Garg, “Development of high strength hydroxyapatite by solid-state-sintering process”, Ceramics International, In Press, Corrected Proof, (2006). 87. Irma Bogdanoviciene, Aldona Beganskiene, Kaia Tõnsuaadu, Jochen Glaser, H.-Jürgen Meyer and Aivaras Kareiva, “Calcium hydroxyapatite (Ca10(PO4)6(OH)2, HA) ceramics prepared through aqueous sol–gel processing”, Materials Research Bulletin, In Press, Uncorrected Proof, (2006). 88. Wang Feng, Li Mu-sen, Lu Yu-peng and Qi Yong-xin, “A simple sol–gel technique for preparing hydroxyapatite nanopowders”, Materials Letters, 59, (2005), p.916-919. 89. L. Bernard, M. Freche, J.L. Lacout and B. Biscans, “Preparation of hydroxyapatite by neutralization at low temperature—influence of purity of the raw material”, Powder Technol. 103 (1999), p.19. 90. K.C.B. Yeong, J. Wang and S.C. Ng. “Mechanochemical synthesis of nanocrystalline hydroxyapatite from CaO and CaHPO4”, Biomaterials 22 (2001), p. 2705-2712. 91. W.L. Suchanek, P. Shuk, K. Byrappa, R.E. Riman, K.S. TenHuisen and V.F. Janas, “Mechanochemical–hydrothermal synthesis of carbonated apatite powders at room temperature”,Biomaterials 23 (2002), p. 699-710. 92. Guangsheng Guo, Yuxiu Sun, Zhihua Wang and Hongyou Guo, ” Preparation of hydroxyapatite nanoparticles by reverse microemulsion”, Ceramics International, 31, (2005), p.869-872. 93. G. K. Lim, J. Wang, S. C. Ng, C. H. Chew and L. M. Gan, “Processing of hydroxyapatite via microemulsion and emulsion routes”, Biomaterials, 18, (1997), p.1433-1439. 94. Fukue Nagata, Tatsuya Miyajima and Yoshiyuki Yokogawa, “A method to fabricate hydroxyapatite/poly(lactic acid) microspheres intended for biomedical application”, Journal of the European Ceramic Society, 26, (2006), p.533-535. 95. Xinlong Wang, Hongsong Fan, Yumei Xiao and Xingdong Zhang, “Fabrication and characterization of porous hydroxyapatite/β-tricalcium phosphate ceramics by microwave sintering”, Materials Letters, 60, (2006), p.455-458. 96. 鄭世裕, “材料微波處理技術及其應用”, 工業材料, 212期, 93年8月, p.162-169. 97. 林人傑, 楊茵茹, “材料合成的微波製程”, 工業材料, 216期, 93年12月, p.96-101. 98. Markov, Ivan V., “Crystal Growth for Beginners : Fundamentals of Nucleation, Crystal Growth, and Epitaxy”, Singapore, River Edge, N.J World Scientific Publishing Co., (1995). 99. Chien-Chung Chen, Chia Fu Chen, Cheng-Hang Hsu and I-Hsuan Li, “Growth and characteristics of carbon nanotubes on carbon cloth as electrodes”, Diamond and Related Materials, 14, (2005), p.770-773. 100. Hai Sun, Gongquan Sun, Suli Wang, Jianguo Liu, Xinsheng Zhao, Guoxiong Wang, Hengyong Xu, Shoufu Hou and Qin Xin, “Pd electroless plated Nafion membrane for high concentration DMFCs ”, 259, (2005), p.27-33. 101. T. Hejze, B.R. Gollas, R.K. Sauerbrey, M. Schmied, F. Hofer and J.O. Besenhard, “Preparation of Pd-coated polymer electrolyte membranes and their application in direct methanol fuel cells”, Journal of Power Sources, 140, (2005), p.21-27. 102. 陳凌援, 林修正, “燃料電池中的觸媒”, 科學發展, 370期, 2003年10月, p.24-27. 103. P. Stonehart, Ber. Bunsen-Ges. Phys. Chem. 94, (1990), p.913. 104. M.W. Verbrugge, J. Electrochem. Soc., 141, (1994), p.46. 105. Chepuri R.K. Rao and D.C. Trivedi, “Chemical and electrochemical depositions of platinum group metals and their applications”, Coordination Chemistry Reviews, 249, (2005), p.613-631. 106. 汪建民 主編, “材料分析Materials Analysis”, 中國材料科學學會, 93年三版. 107. 廖聖茹, 黃依蘋, 林仁章, 黃瑞呈, “多孔性奈米材料比表面積/孔隙度檢測技術”, 工業材料, 190期, 91年10月, p.115-123. 108. K. S. W. Sing, D. H. Evertt, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, and T. Simieniewska, “Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity”, Pure & Appl. Chem., 57, (1985), p.603-619. 109. J. H. Chern Lin, H. J. Lin, S. J. Ding and C. P. Ju, “Characterization of immersed hydroxyapatite-bioactive glass coating in Hank’s solution”, Materials Chemistry and Physics, 64, (2000), p.229-240. 110. S. D. Jackson, J. Willis, G. D. Mclellan, G. Webb, M. B. T. Keegan, R. B. Moyes, S. Simpson, P. B. Wells, and R. Whyman, “An alternative phase-transfer method of preparing alkylamine-stabilized platinum”, Journal of physical chemistry B, 108, (2004), p.2181-2185. 111. Shinri Sato, “Photoelectrochemical preparation of Pt/TiO2 catalysts”, Journal of catalysis, 92, (1985), p.11-16. 112. Kai M. Udert, Tove A. Larsen, Martin Biebow, Willi GuJer, “Urea hydrolysis and precipitation dynamics in a urine-collecting system”, Water Research, 37, (2003), p.2571-2582. 113. Kai M. Udert, Tove A. Larsen, Willi GuJer, “Estimating the precipitation potential in urine-collecting systems”, Water Research, 37, (2003), p.2667-2677. 114. George H. Nancollas. The nucleation and growth of phosphate minerals. In: Nriagu JO, Moore PB, editors. Phosphate minerals. Berlin: Springer, (1984), p.137-54. 115. George H. Nancollas, “The growth of crystals in solution”, Advances in Colloid and Interface Science, 10, (1979), p.215-252. 116. H. J. Meyer, “The influence of impurities on the growth rate of calcite”, Journal of Crystal Growth, 66, (1984), p.639-646. 117. 劉漢章, 何文賢, 顏秀崗, ”電化學合成磷酸鐵鋰電池正極材料”, 中國材料科學學會, 2004年材料年會論文集, (2004), pc2-28. 118. Chun-Pin Lin, Ya-Chun Tseng, Feng-Huei Lin, Jiunn-Der Liao and Wan-Hong Lan, “Treatment of tooth fracture by medium-energy CO2 laser and DP-bioactive glass paste: the interaction of enamel and DP-bioactive glass paste during irradiation by CO2 laser ”, Biomaterials, 22, (2001), p.489-496. 119. R. Cusco, F. Guitian, S. de Aza and L. Artús, “Differentiation between hydroxyapatite and β-tricalcium phosphate by means of μ-Raman spectroscopy”, Journal of the European Ceramic Society, 18, (1998), p.1301-1305. 120. J.L. Xu. K.A. Khor, Y.W. Gu, R. Kumar, P. Cheang, “Radio frequency(rf) plasma spheroidized HA powders: powder characterization and spark plasma sintering behavior”, Biomaterials, 26, (2005), p.2197-2207. 121. Rebeca Alvarez, Louise A. Evans, Paul J. Milham, Michael A. Wilson, “Effects of humic material on the precipitation of calcium phosphate”, Geoderma, 118, (2004), p.245-260. 122. R. Murugan, S. Ramakrishna, “Production of ultra-fine bioresorbable carbonated hydroxyapatite”, Acta Biomaterialia, 2, (2006), p.201-206. 123. Vicky Kartsogiannis and Kong Wah Ng, ”Cell lines and primary cell cultures in the study of bone cell biology”, Molecular and Cellular Endocrinology, 228, (2004), p.79-102. 124. Zhu PX, Masuda Y, Yonezawa T, Koumoto K, “Investigation of apatite deposition onto charged surfaced in aqueous solution using a quartz-crystal microbalance”, Journal of the American Ceramic Society. 86, (2003), p.782-790. 125. Lenka Muller, Frank A. Muller, “Preparation of SBF with different HCO3- content and its influence on the composition of biomimetis apatites”, Acta Biomaterialia, 2, (2006), p.181-189.
摘要: 粒徑約10 μm的多孔性磷酸鈣微粒可在Ca(NO3)2‧4H2O和NH4H2PO4水溶液中藉微波水熱法而合成出來。利用SEM、XRD、FTIR、Raman等分析可鑑定粉末的晶體結構為DCPA,而微波的時間和功率、成核劑的濃度、尿素的濃度、以及微波後冷卻的反應時間和溫度等參數,都會影響到所合成出的磷酸鈣微粒之表面型態及成核數目。並利用比表面積與孔隙度分析儀來分析多孔微粒的比表面積和孔隙大小,結果顯示此微粒具有4.9 m2/g之比表面積,孔隙大小由0.85~150 nm,微孔與介孔比體積為0.03 cm3/g。此多孔狀的磷酸鈣粉末應可作為藥劑或觸媒的載體,以及可注射骨粉等用途。
Porous calcium phosphate particles about 10 μm in diameter were synthesized in Ca(NO3)2‧4H2O and NH4H2PO4 aqueous solution by a microwave-hydrothermal synthesis. The results revealed that microwave irradiation time and power, concentrations of inoculants and urea, and cooling time and temperature have significant effects on the particle number and morphology of synthesized calcium phosphate which showing DCPA crystal structure. The microstructure and chemical bonding of the synthesized powders were characterized by using scanning electron microscopy (SEM), X-ray diffractometry (XRD), FT-IR spectrometer, Raman scattering spectrometer and specific surface area/porosimetry & chemisorption analyzer. The porous particles exhibit a specific surface area of 4.9 m2/g, pore size from 0.85~150 nm, and pore volume of 0.03 cm3/g. The porous calcium phosphate particles were suggested to be used as drugs or catalysts carriers, and injectable powders of bone graft.
URI: http://hdl.handle.net/11455/11110
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館

Show full item record
 
TAIR Related Article
 
Citations:


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.