Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11125
標題: 可撓式矽基薄膜電晶體之研製與特性研究
Fabrication and Characterization of Si-Based Thin-Film Transistors on Flexible Substrates
作者: 陳永培
Chen, Yung-Pei
關鍵字: Parylene
聚-對二甲苯
Gas barrier
Flexible TFT
Amorphous silicon
氣體阻隔膜
可撓式薄膜電晶體
非晶矽
出版社: 材料工程學系所
引用: 參考文獻 [1] 田宏隆,‘‘軟性顯示器用塑膠基板技術發展與技術’’,工業材料雜誌210期(2004)第190-199頁。 [2] 田宏隆,“OLED用可撓式塑膠基材技術與現況”,電子與材料雜誌21期 (2004)第50-58頁。 [3] 陳麒麟,張榮芳,張加強,“軟性顯示器發展及關鍵技術現況” ,機械工業雜誌258期(2004) 第110-121頁。 [4] T. Takayama, Y. Ohno, Y. Goto, A. Machida, M. Fujita, J. Maruyama, K. Kato, J. Koyama, and S. Yamazaki, “A CPU on a Plastic Film Substrate,” Symp. VLSI Technol. Digest, 7 Apr. 2004. [5] I. French, D. McCulloch, I. Boerefijn, N. Kooyman “Thin Plastic Electrophoretic Displays Fabricated by a Novel Process,” SID Symp. Dig. Technol., Vol. 36, Issue 1, pp. 1634-1637 [6] K. Chung, Flexible Substrate, USDC, 2005. [7] http://202.85.169.139/gate/big5/china.nikkeibpco.jp/chia/sou/fpd2003.htm [8] F. Lemmi, S. Lin ,B. C. Drews, A. Hua., J. R. Stern, W. Chung, P. M. Smith, J. Y. Chen “Poly-Si TFTs From Glass to Plastic Substrate: Process and Manufacturing Challenges,” FlexICs,165 Topaz Street, Milpitas [9] T. Afentakis, M. Hatalis “High Performance Polysilicon Thin Film Transistor Circuits on Flexuble Stainless Steel Foils,” M.R.S. Symp. Pro. Vol.769, pp.47-52 2003. [10] J. H. Schon, Ch. Kloc, and B. Batlogg, “Efficient photovoltaic energy conversion in pentacene-based heterojunctions,”, Appl. Phys. Lett., vol. 77, pp. 2473-2475, 2000. [11] A Sazonov, and A. Nathan, “120℃ fabrication technology for a-Si:H thin film transistors on flexible polyimide substrates,” J. Vac. Sci. Technol. A, vol. 18, pp. 780-781, 2000. [12] 紀國鐘,鄭晃忠,液晶顯示技術手冊,台灣電子材料與元件協會,2003。 [13] P. G. Lecomber, W. E. Spear, A. Ghaith, “Amorphous-silicon field-effect device and possible. application,” Electronics Letter, Vol. 15, No. 6, pp. 179-. 181, 1979. [14] T. P. Brody, J. A. Asars, and G. D. Dixon, “A 6×6 Inch 20 Lines-per-Inch Liquid-Crystal Display Panel,” IEEE Transactions on Electron Devices, Vol. ED-20, No. 11, pp. 995-1001, 1973. [15] P. G. Lecomber, W. E. Spear, and A. Ghaith, “Amorphous-Silicon Field-Effect Device and Possible Application,” Electronics Letters, Vol. 15, No. 6, pp. 179-181, March, 1979. [16] Kazuhiro Shimizu, and Osamu Sugiura, “High-mobility Poly-Si Thin-film Transistors Fabricated by a Novel Excimer Laser Crystallization Method,” IEEE Transactions on Electron Devices,Vol. 40, No. 1, January, 1993. [17] T. Serikawa, and S. Shirai, “Low Temperature Fabrication of High Mobility Poly-Si TFTs for Large Area LCDs,” IEEE Transactions on Electron Devices, Vol. 36, No. 9,pp. 1929-1933, September, 1989. [18] 行政院國科會科學技術資料中心網站,(http://cdnet.stic.gov.tw/techroom/market/eedisplay/eedisplay046.htm) [19] H. Hamada, K. Hirano, N. Goda, H. Abe, I. Hasegawa, Y. Okita, S. Arioka, and T. Niina, “Reduction of the Off-State Current of Polysilicon Thin-Film Transistors by Means of a Polysilicon Buffer Layer,” Electronics Letters 29th, Vol. 30, No.20, pp. 1719-1720, 1994. [20] Sung Ki Kim, Young Jin Choi, Kyu Sik Cho, and Jin Jang, “Hydrogen Dilution Effect on the Properties of Coplanar Amorphous SiliconThin-Film Transistors Fabricated by Inductively-Coupled Plasma CVD,” IEEE Transactions on Electron Devices, Vol. 46, No. 5, pp. 1001-1006, May 1999. [21] Sung Ki Kim, Young Jin Choi, Won Kyu Kwak, Kyu Sik Cho, and Jin Jang, “A Novel Coplanar Amorphous Silicon Thin-Film Transistor Using Silicide Layers,” IEEE Electron Device Letters, Vol. 20, No. 1, pp. 33-35, January 1999. [22] Young Jin Choi, Won Kyu Kwak, Kyu Sik Cho, Sung Ki Kim, and Jin Jang, “Hydrogenated Amorphous Silicon Thin-Film Transistor with a Thin Gate Insulator,” IEEE Electron Device Letters, Vol. 21, No. 1, pp. 18-20, January 2000. [23] Kenji Sera, Fujio Okumura, Hiroyuki Uchida, Shinji Itoh, Setsuo Kaneko, and Kazuaki Hotta, “High-Performance TFT’s Fabricated by XeCl Excimer Laser Annealing of Hydrogenated Amorphous-Silicon Film,” IEEE Transactions on Electron Devices, Vol. 36, No. 12, pp. 2868-2872, December 1989. [24] Jung In Han, Gi Young Yang, and Chul Hi Han, “A New Self-Aligned Offset Staggered Polysilicon Thin-Film Transistor,” IEEE Electron Device Letters, Vol. 20, No. 8, pp. 381-383, August 1999. [25] Wen Jian Lin and Hsiung Kuang Tasi, “A New Process of Fabricating Inverted-Staggered Tri-Layer Thin Film Transistors,” IEEE Electron Device Letters, Vol. 16, No. 4, pp. 133-135, April 1995. [26] Takashi Aoyama, Kazuhiro Ogawa, Yasuhiro Mochizuki, and Nobutake Konishi, “Inverse Staggered Poly-Si and Amorphous Si Double Structure TFT’s for LCD Panels with Peripheral Driver Circuits Integration,” IEEE Transaction on Electron Devices, Vol. 43, No. 5, pp. 701-705, May 1996. [27] S. D. Theiss, and S. Wagner, “Amorphous Silicon Thin-Film Transistors on Steel Foil Substrates,” IEEE Electron Device Letters, Vol. 17, No. 12, pp. 578-580, December 1996. [28] A. Stein, A. Liss, W. Dintinger, J. Rosedale, C. Hester, “Plastic LCD Substrates That Combine Optical Quality and High Use Temperature,” in SID Inl. Symp. Dig. Applications Papers, Santa Ana, CA, Vol. XXVII, pp. 11-14, 1996. [29] C. S. Yang, W. W. Read, C. Arthur, E. Srinivasan, and G. N. Parsons, “Self-Aligned Gate and Source Drain Contacts in Inverted-Staggered a-Si:H Thin-Film Transistors Fabricated Using Selective Area Silicon PECVD,” IEEE Electron Device Letters, Vol. 19, No. 6, pp. 180-182, June 1998. [30] http://www.scsalpha.com/indexus.htm [31] 徐武軍,‘高分子材料導論’,五南圖書出版股份有限公司,2004,20。 [32] J. Noordegraaf and H. Hull, “C-shield parylene allows major weight saving for EM shielding of microelectronic,” The First IEEE Inter. Symp. on Polymeric Psckaging, pp189-196, 1997. [33] Q. Yu, J. Deffeyes, and H. Yasuda, “Engineering the surface and interface of Parylene C coatings by low-temperature plasmas,” Prog. Org. Coat., vol. 41, pp.247-253, 2001. [34] M. Liger, T. A. Harder, Tai Yu-Chong, S. Konishi, “Parylene-pyrolyzed carbon for MEMS applications,” IEEE, 17th IEEE International Conference on MEMS, pp.161-164, 2004. [35] Yong-Hoon Kim, Dae-Gyu Moon, Jeong-In Han, “Organic TFT array on a paper substrate,” IEEE Electron Device Lett., vol. 25, no.10, pp.702-704, 2004. [36] A. Tooker, E. Meng, J. Erickson, Tai, Y.-C, J. Pine, “Development of biocompatible parylene neurocages,” IEEE, 26th Annual International Conference of the Engineering in Medicine and Biology Society, vol. 1, pp.2542-2545, 2004. [37] “PERMATRAN-W Model 3/61 Operator’s Manual”, mocon Chaper 4-5. [38] “OX-TRAN Model 2/61 Operator’s Manual”, mocon Chaper 4-5. [39] G. Nisato, P. C. P. Bouten, P. J. Slikkerveer, W. D. Bennett, G. L. Graff, N. Rutherford, and L. Wiese, “Evaluating High Performance Diffusion Barrier: the Calcium Test,” Proc. Asia Display/IDW01, p.1435, 2001. [40] Ashok K. Sharma, and H. Yasuda, “Effect of glow discharge treatment of substrates on parylene-substrate adhesion,” J. Vac. Sci. Technol., vol. 21, pp.994-997, 1982.
摘要: 近年來在可撓式基板上製作薄膜電晶體已引起廣泛的討論,主要是因為此類基板具有輕、薄且可撓曲的特性。然若在一般的塑膠基板上直接製作此類電子元件,則會受限於塑膠基板所能承受的溫度以及其不耐化學腐蝕的特性。有鑑於此,本論文主要是發展一可符合現行薄膜電晶體製程且便宜的有機薄膜基板。 本論文中主要是以玻璃做為載板,沈積聚對二甲苯薄膜基板於玻璃上,並在此基板上以標準的薄膜電晶體製程在250°C溫度下製作氫化非晶矽薄膜電晶體。此外本論文亦研究在聚對二甲苯薄膜基板上進行多層有機/無機鍍膜,經由實驗得知多層膜結構可以將可撓式基板之水氣透過率降至3.9×10-5 g/m2/day。薄膜電晶體的特性不受聚對二甲苯薄膜基板從玻璃基板上剝離的影響,其在聚對二甲苯薄膜基板上之電晶體特性如下;開啟電流:1.7×10-5 A、關電流:7.9×10-11 A、開關電流比:2.2×105、臨限電壓:2.2 V、場效遷移率:0.3 cm2/V˙s 。將製作完成之元件從玻璃上剝離,即得到可撓式薄膜電晶體,經由撓曲一萬次的試驗之後其電晶體特性如下;開啟電流:1.4×10-5 A、關閉電流:11.6×10-11 A、開關電流比:1.2×105、臨限電壓:2.4 V、場效遷移率:0.26 cm2/V˙s。經由撓曲測試之後發現本實驗所製作之薄膜電晶體其輸出電流變化不大,主要是因為藉由控制聚對二甲苯薄膜基板的厚度,進而改變其承受的應力變化。經由適當的應力調整,本論文成功地以玻璃為載板並在聚-對二甲苯薄膜基板上製作出可撓式薄膜電晶體。
Thin-film transistors (TFTs) on flexible substrates have received considerable interest in the field of microelectronic industry due to their light weight, thin thickness and flexibility of the devices. Fabrication of the Si-based TFTs directly on the plastic substrates has been limited by the higher processing temperature and chemical agent treatments. The motivation of this thesis is to develop a novel process technique to overcome the above problems. The TFTs on an extremely inexpensive polymeric substrate can then be benefited from the experience in developing the standard TFT manufacturing processes. The TFTs describe in this work were made of hydrogenated amorphous silicon (a-Si:H) on an engineered parylene substrate carried by a glass plate. They have been processed at 250°C using a standard Si TFT fabrication facility. To prepare a gas barrier coating on a parylene flexible substrate, a multilayer structure consisted of parylene and SiNx films was designed and a low water vapor transmission rate 3.9×10-5 g/m2/day can be achieved. The performance of a-Si:H TFTs on parylene is shown to be unaffected after the engineered parylene substrate is removed from the glass plate. The current versus voltage characteristics of the a-Si:H TFTs on a parylene substrate show the following data: the on current 1.7×10-5 A, off current 7.9×10-11 A, on/off current ratio 2.2×105, threshold voltage 2.2 V, and field effect mobility 0.3 cm2/V˙s. After cyclic bending test for 10,000 times, the on current is 1.4×10-5 A, off current 11.6×10-11 A, on/off current ratio 1.2×105, threshold voltage 2.4 V, and field effect mobility is 0.26 cm2/V˙s. The variation of output current shows only in a very limited range after the cyclic bending test. It could be due to the precise stress control of TFTs by different parylene thickness, resulting in the substrate bent to a small radius of curvature. The results presented have demonstrated that the concept of a-Si TFTs fabricated on a parylene substrate carried by a temporary glass plate is a promising approach to future flexible displays.
URI: http://hdl.handle.net/11455/11125
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館

Show full item record
 
TAIR Related Article
 
Citations:


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.