Please use this identifier to cite or link to this item:
標題: 可撓式LED光板之製程研發與特性研究
Fabrication and Characterization of Flexible LED Optical Plates
作者: 陳文雋
Chen, Wen-Chun
關鍵字: 可撓式
出版社: 材料工程學系所
引用: [1] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, ‘‘InGaN/GaN/AlGaN-Based Laser Diodes with Modulation-Doped Strained-Layer Superlattices Grown on an Epitaxially Laterally Overgrown GaN Substrate,’’ Appl. Phys. Lett., 72, 211 (1998). [2] J. Han, M. H. Crawford, R. J. Shul, J. J. Figiel, M. Banas, L. Zhang, Y. K. Song, H. Zhou, and A. V. Nurmikko, ‘‘AlGaN/GaN Quantum Well Ultraviolet Light Emitting Diodes,’’ Appl. Phys. Lett., 73, 1688 (1998). [3] R. Gaska, Q. Chen, J. Yang, A. Osinsky, M. Asif Khan, and M. S.Shur, ‘‘High-Temperature Performance of AlGaN/GaN HFETs on SiC Substrates,’’ IEEE Electron Device Lett., 18, 492 (1997). [4] 姚柏宏,‘‘LED光源模組發展現狀與機會’’,工業材料雜誌221期,第87-92頁 (2005)。 [5] 王興龍,‘‘軟性顯示器之現況與未來發展’’,工業材料雜誌222期,第127-134頁 (2005)。 [6] C. W. Tang and S. A. VanSlyke, “Organic Electroluminescent Diodes,” Appl. Phys. Lett., 51, 913 (1987). [7] J. S. Lewis and M. S. Weaver, “Thin-Film Permeation-Barrier Technology for Flexible Organic Light-Emitting Devices,” IEEE Select. Topics. Quantum Electron., 10, 45 (2004). [8] “Flexible Substrate,” issue 2 of 10, march (2005). [9] H. Sato, H. Fujikake, T. Murashige, H. Kikuchi, T. Kurita and F. Sato, “A4-Sized Flexible Ferroelectric Liquid-Crystal Display with Micro Color Filters,” J. Soc. Inf. Display 13, 461 (2005). [10] 田宏隆,‘‘可撓式平面顯示器用基板材料’’,工業材料雜誌234期,第144-152頁 (2006)。 [11] [12] Q. Yu, J. Deffeyes, and H. Yasuda, “Engineering the Surface and Interface of Parylene C Coatings by Low-Temperature Plasmas,” Prog. Org. Coat., 41, 247 (2001). [13] M. Liger, T. A. Harder, Tai Yu-Chong, S. Konishi, “Parylene-pyrolyzed carbon for MEMS applications” IEEE, 17th IEEE International Conference on MEMS, pp.161-164 (2004). [14] Yong-Hoon Kim, Dae-Gyu Moon, Jeong-In Han, “Organic TFT Array on a Paper Substrate,” IEEE Electron Device Lett., 25, 702 (2004). [15] A. Tooker, E. Meng, J. Erickson, Tai, Y.-C, J. Pine, “Development of Biocompatible Parylene Neurocages,” IEEE, 26th Annual International Conference of the Engineering in Medicine and Biology Society, 1, 2542 (2004). [16] 蔣承忠,陳永培,陳文雋, ‘‘矽基可撓式薄膜電晶體之研製’’ Taiwan Display Conference, Taipei, Taiwan, Jun. (2006). [17] M. Quaas, C. Eggsl, H. Wulff, “Structural Studies of ITO Thin Films with the Rietveld Method,” Thin Solid Films, 332, 277 (1998) [18] A. J.Steckl and G. Mohammed, “The Effect of Ambient Atmosphere in the Annealing of ITO Films,” J. Appl. Phys., 51, 3890 (1980). [19] M. Quaas, H. SteVen , R. Hippler , H. WulV, “The Growth Process of Plasma-Deposited ITO Films Investigated by Grazing Incidence X-Ray Techniques”, Surface Science, 790, 454 (2000). [20] C. C. Fan John and J. Bachner Frank, “Properties of Sn-Doped In2O3 Films Prepared by RF Sputtering”, J. Electrochem. Soc., 122, 1719 (1975). [21] P. Nath and R.F. Bunshah, “Preparation of In2O3 and Tin-Doped In2O3 Films by a Novel Activated Reactive Evaporation Technique,” Thin solid Films, 69, 63 (1980). [22] M. Hecq, A. Dubois and J. Van Cakenberghe, “Étude par diffraction de rayons X de films à base d''oxydes d''étain et d''indium,” Thin solid Films, 18, 117 (1973). [23] J. L Vossen, “RF Sputtered Transparent Conductors He Systems In2O3-SnO2,” RCA Review, 32, 289 (1971). [24] 陳思成,‘‘沉積ITO透明導電膜於可撓式基板上之性質研究,’’ 國立成功大學材料科學及工程研究所碩士論文 (2003) [25] F. Wu and B. S. Chiou, “Properties of Radio-Frequency Magnetron Sputtered ITO Films without In-Situ Substrate Heating and Post-Deposition Annealing,” Thin Solid Films, 247, 201 (1994). [26] H. Kim and C. M. Gilmore “Electrical, Optical, and Structural Properties of Indium-Tin-Oxide Thin Films for Organic Light-Emitting Devices,” J. Appl. Phys., 86, 6451 (1999). [27] E. Burstein, “Anomalous Optical Absorption Limit in InSb,” Phys. Rev., 93, 455 (1954). [28] Y. Shigesato, S. Tasaki and T. Haranoh, “Electrical and Structural Properties of Low Resistivity Tin-Doped Indium Oxide Films,” J. Appl. Phys., 71, 3356 (1992). [29] F.O. Adurodija, H. Izumi, T. Ishihara, H.Yoshioka, M. Mootoyama and K.Murai, “Pulsed Laser Deposition of Crystalline Indium Tin Oxide Films at Room Temperature by Substrate Laser Irradiation,” Jpn. J. Appl. Phys., 39, 377 (2000). [30] S. M.Rozati, T. Ganj, “Transparent Conductive Sn-Doped Indium Oxide Thin Films Deposited by Spray Pyrolysis Technique,” Renewable Energy, 29, 1671 (2004). [31] B. S. Chiou and S. T. Hsieh, “R.f. Magnetron-Sputtered Indium Tin Oxide Film on a Reactively Ion-Etched Acrylic Substrate,” Thin Solid Film, 229, 146 (1993). [32] M. Nisha, S. Anusha, A, Antony, R. Manoj, M. K. Jayaraj, “Effect of Substrate Temperature on the Growth of ITO Thin Films,” Appl. Surf. Sci., 252, 1430 (2005). [33] D. R. Cairns, R. P. Witte II, D. K. Sparacin, S. M. Sachsman, D.C. Paine, and G.P. Crawford, “Strain-Dependent Electrical Resistance of Tin-Doped Indium Oxide on Polymer Substrates” Appl. Phys. Lett., 76, 1425 (2000). [34] S. K. Park, J. I. Han, D. G. Moon, and W. K. Kim, “Mechanical Stability of Externally Deformed Indium-Tin-Oxide Films on Polymer Substrates” Jpn. J. Appl. Phys., 42, 623 (2003)
摘要: 軟性電子是一種將元件與材料技術建置在可彎曲的基板上的新興科技,近年來已成為科技熱門話題。目前眾多新穎技術當中僅少數有應用產品推出,在於許多關鍵技術尚未有所突破,其中可撓式背光源便是一個例子。本論文的的核心技術就是在開發一輕、薄並可撓曲的發光板。 吾人於論文中提出關鍵製程,結合高反射率金屬電極將發光二極體陣列在以玻璃為承載基板的可撓性銦錫氧化物透明導電基板上,開發穩定且高壽命的固態光源。製程建立在薄膜技術以及現今半導體製程,且為達降低微影的成本,製程中不使用光罩。在彎曲實驗中,測試不同彎曲半徑對銦錫氧化物基板的影響;結果發現使用250 oC製程的二氧化矽做為阻障層,其基板結構具有最佳的機械特性。垂直導通式發光二極體做為固態光源,並陣列在銦錫氧化物薄膜以及鋁薄膜之間;跟一般封裝後的發光二極體不同的是製程直接使垂直導通發光二極體晶粒,兼具低成本、環保且更長的使用壽命。 再者,將整個可撓式光板彎曲做測試,仍展現其發光的特性。在於基板厚度控制整個結構的應力,使光板可以彎曲到很小的曲率半徑。因此我們可以說,可撓式發光二極體光板的首例讓我們向可撓式液晶顯示器邁進一大步。
Electronic devices fabricated on flexible substrate are the object of rapidly growing interest of research community and industry. Based on several novel technologies, a limited number of products are already being produced. However, like many new technologies of the future, some technical issues have to be resolved such as flexible backlight source. The focus of this paper is to develop a thin, flexible and light emissive sheet. This thesis reports on a scalable manufacturing process for fabricating LED-based light sheet by bonding a grid of LED chips on a conductive flexible ITO substrate carried by a glass plate and combining a reflective metal electrode to produce long lasting and durable solid-state lighting sources. The process sequence is based on thin film technology compatible with existing manufacturing process. In order to achieve significant savings over conventional photolithography, our fabrication process is mask-less. Bending experiments were performed for different ITO structure as a function of radius. The ITO film with SiO2 buffer layer for transparent conductors is the most mechanically robust structure fabricated at 250 C. The vertical-LEDs chips were used as solid-state light source and the LEDs were arrayed between ITO and Al thin films. Avoiding the use of conventionally packaged LED, the vertical-LEDs chips can achieve cost saving, environmentally-friendly and long lifetimes. Furthermore, the bending tests have been also applied to flexible light sheet. Bending test on these light sheet shows that their light performance is not change. Because we can control the stress of structure by different substrate thickness, such light sheets function can be well after the substrate bend to small radii of curvature. The first demonstration of flexible light sheet is a very promising approach to flexible displays.
Appears in Collections:材料科學與工程學系



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.