Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11139
標題: 金屬基板型氮化鎵發光二極體之開發研究
Fabrication and characterization of GaN Light-Emitting Diodes with metallic substrates
作者: 林義豐
Lin, Yi-Feng
關鍵字: GaN
氮化鎵
light emitting diode (LED)
laser lift-off (LLO)
metal substrate
thermal dissipation
發光二極體
雷射剝離技術
金屬基板
散熱
出版社: 材料工程學系所
引用: [1] S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. vol. 64, 1687 (1994). [2] T. Mukai, D. Morita, and S. Nakamura, “High-power UV InGaN/AlGaN double-heterostructure LEDs,” J. Cryst. Growth vol. 189/190, 778 (1998). [3] S. Nakamura and G. Fasol, The Blue Laser Diodes The Complete Story. Berlin, Springer (1997). [4] T. Mukai, H. Narimatsu, and S. Nakamura, “Amber InGaN-based light-emitting diodes operable at high ambient temperatures,” Jpn. J. Appl. Phys. Part 2 vol. 37, L479 (1998). [5] S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, T.Mukai, “Superbright green InGaN single-quantum-well-structure light-emitting diodes,” Jpn. J. Appl. Phys. vol. 34, L1332 (1995). [6] S. Nakamura, T. Mukai, and M. Senoh, “High-power GaN P-N Junction blue-light-emitting diodes,” Jpn. J. Appl. Phys. vol. 30, 1998 (1991). [7] H.Sugawara, and M. Ishikawa, and G. Hatakoshi, “High-efficiency InGaAlP/GaAs visible light-emitting diodes,” App. Phys. Lett. vol. 58, 1010 (1991). [8] H. Sugawara, K. ltaya, H. Nozaki, G. Hatakoshi, “High-brightness InGaAlP green light-emitting diodes,” App. Phys. Lett. vol. 61, 1775 (1993). [9] D. A. Vanderwater, I. H. Tan, G. E. Hofler, D. C. DeFevere, F. A. Kish, “High-brightness AlGaInP light emitting diodes,” IEEE. vol. 85, 1752 (1997). [10] A. Zukauskas, M. S. Shur, and R. Gaska, Introduction to Solid-State Lighting. New York, Wiley (2002). [11] S. Nakamura and S. F. Chichibu, Introduction to Nitride Semiconductor Blue Laser Diode and Light Emitting Diodes. London, Taylor and Francis (2000). [12] S. Nakamura and G. Fasol, The Blue Laser Diode: GaN Based Light Emitters and Lasers. Berlin, Springer (1997). [13] M. R. Krames, M. Ochinai-Holocomb, G. E. Hofler, C. Carter-Coman, E. I. Chen, I. –H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J. –W. Huang, S. A. Stockman, F. A. Kish, and M. G. Carford, “High-power truncated-inverted-pyramid (AlxGa1–x)0.5In0.5P/GaP light-emitting diodes exhibiting >50 external quantum efficiency,” Appl. Phys. Lett. vol. 75, 2365 (1999). [14] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. Denbaars, S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett. vol. 84, 855 (2004). [15] C. C. Kao, H. C. Kuo, Member, H. W. Huang, J. T. Chu, Y. C. Peng, Y. L. Hsieh, C. Y. Luo, S. C. Wang, C. C. Yu, and C. F. Lin, “Light-output enhancement in a nitride-based light-emitting diode with 22˚undercut sidewalls,” IEEE Photon. Technol. Lett. vol. 17, 19 (2005). [16] C. Huh, K. S. Lee, E. J. Kang, and S. J. Park, “Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughening of the p-GaN surface,” J. App. Phys. vol. 93, 9383 (2003). [17] J. Baur, B. Hahn, M. Fehrer, D. Eisert, W. Stein, A. Plossl, F. Kuhn, H. Zull, M. Winter, and V. Harle, “InGaN on SiC LEDs for High Flux and High Current Applications,” Phys. Stat. Sol. (a) vol. 194, 399 (2002). [18] J. J. Wierer, D. A. Steigerwald, M. R. Krames, J. J. O’Shea, M. J.Ludowise,G. Christenson,b) Y.-C. Shen, C. Lowery, P. S. Martin, S. Subramanya, W. Gotz, N. F. Gardner, R. S. Kern, and S. A. Stockman, “High-power AlGaInN flip-chip light-emitting diodes,” Appl. Phys. Lett. vol. 78, 3379 (2001). [19] T. Egawa, B. Zhang, and H. Ishikawa, “High performance of InGaN LEDs on (111) silicon substrates grown by MOCVD,” IEEE. vol. 26, 169 (2005). [20] 施敏 原著, 張俊彥 譯著, “半導體元件物理與製程技術,” 第三版, 高立圖書有限公司, 台北, 台灣, pp. 104-206, 2000. [21] D. K. Schroder, Semiconductor Material and Device Characterization. New York, Wiley (1998). [22] V. M. Burmedez, “Study of oxygen chemisorption on the GaN(0001)-(1×1) surface,” J. Appl. Phys. vol. 80, 1190 (1996). [23] 史光國, “現代半導體發光及雷射二極體材料技術,” 全華科技,台北,台灣, pp. 4.1-4.5 (2001) [24] Y. Xi and E. F. Schubert, “Junction–temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method,” Appl. Phys. Lett. vol. 85, 2163 (2004). [25] Y. Xi, J. Q. Xi, Th. Gessmann, J. M. Shah, J. K. Kim, E. F. Schubert, A. J. Fischer, M. H. Crawford, K. H. A. Bogart, and A. A. Allerman, “Junction and carrier temperature measurements in deep-ultraviolet light-emitting diodes using three different methods,” Appl. Phys. Lett. vol. 86, 031907 (2005). [26] LumiLeds, “Thermal Management Considerations for Super Flux LEDs,” Application Note, 1149-4. [27] I. Schnitzer, E. Yablonovitch, C. Caneau, and T. J. Gmitter, “Ultrahigh spontaneous emission quantum efficiency, 99.7% internally and 72% externally, from AlGaAs/GaAs/AlGaAs double heterostructures,” Appl. Phys. Lett. vol. 62, 131 (1993). [28] J. K. Sheu, Y. K. Su, G. C. Chi, W. C. Chen, C. Y. Chen, C. N. Huang, J. M. Hong, Y. C. Yu, C. W. Wang, and E. K. Lin, “The effect of thermal annealing on the Ni/Au contact of p-type GaN,” J. Appl. Phys. vol. 83, 3172 (1998). [29] J. K. Ho, C. S. Jong, C. C. Chiu, C. N. Huang, C. Y. Chen, and K. K. Shih, “Low-resistance ohmic contacts to p-type GaN,” Appl. Phys. Lett. vol. 74, 1275 (1999). [30] J. K. Ho, C. S. Jong, C. C. Chiu, C. N. Huang, K. K. Shih, L. C. Chen, F. R. Chen, and J. J. Kai, “Low-resistance ohmic contacts to p-type GaN achieved by the oxidation of Ni/Au films,” J. Appl. Phys. vol. 86, 4491 (1999). [31] S. R. Jeon, Y. Ho. Song, H. J. Jang, and G. M. Yang, “Lateral current spreading in GaN-based light-emitting diodes utilizing tunnel contact junctions,” Appl. Phys. Lett. vol. 78, 3265 (2001). [32] T. Margalith, O. Buchinsky, D. A. Cohen, A. C. Abare, M. Hansen, S. P.DenBaars, and L. A. Coldren, “Indium tin oxide contacts to gallium nitride optoelectronic devices,” Appl. Phys. Lett. vol. 74, 3930 (1999). [33] R. H. Horng, D. S. Wuu, Y. C. Lien, and W. H. Lan, “Low-resistance and high-transparency Ni/indium tin oxide ohmic contacts to p-type GaN,” Appl. Phys. Lett. vol. 79, 2925 (2001). [34] C. S. Chang, S. J. Chang, Y. K. Su, C. H. Kuo, W. C. Lai, Y. C. Lin, Y. P. Hsu, S. C. Shei, J. M. Tsai, H. M. Lo, J. C. Ke, J. K. Sheu “High brightness InGaN green LEDs with an ITO on n/sup ++/-SPS upper contact,” IEEE. vol. 50, 2208 (2003). [35] S. M. Pan, R. C. Tu, Y. M. Fan, R. C. Yeh, and J. T. Hsu, “Improvement of InGaN-GaN light-emitting diodes with surface-textured indium-tin-oxide transparent ohmic contacts,” IEEE. vol. 15, 646 (2003). [36] P. R. Tavemier and D. R. Clarke Dunn, “Mechanics of laser-assisted debonding of films,” J. Appl. Phys. vol. 89, 1527 (2001). [37] Z. Li, X. Hu, K. Chen, R. Nie, X. Luo, X. Zhang, T. Yu, B. Zhang, S. Chen, Z. Yang, Z. Chen and G. Zhang, “preparation GaN-based cross section TEM specimens by laser lift-off,” Micron, vol. 36, 281 (2005). [38] M. V. Allmen and A. Blastter, “Laser-Beam Interactions with Materials: Physical Principles and Application”, Berlin, 2nd Springer Publisher (1995). [39] R. Groh, G. Gerey, L. Bartha, and J. I. Pankove, “On the thermal decomposition of GaN in vacuum,” Phys. Stat. Sol. (a) vol. 26, 353 (1974). [40] C. J. Sun, P. Kung, A. Saxler, H. Ohsato, E. Bigan, and M. Razeghi, “Thermal stability of GaN thin films grown on (0001) Al2O3, (01 2) Al2O3 and (0001)Si 6H-SiC substrates,” J. Appl. Phys. vol. 76, 236 (1994). [41] M. E. Lin, B. N. Sverdlov, and H. Morkoc, “Thermal stability of GaN investigated by low-temperature photoluminescence spectroscopy,” Appl. Phys. Lett. vol. 63, 3625 (1993). [42] W. S. Wong, Y. Cho, N. J. Quitoriano, T. Sands, A. B. Wengrow and N. W. Cheung, “Integration of GaN thin films with dissimilar substrate materials by Pd-In metal bonding and laser lift-off,” J. Electronic Mater. vol. 28, 1409 (1999). [43] Jo¨rg Neugebauer and Chris G. Van de Walle, “Gallium vacancies and the yellow luminescence in GaN,” Appl. Phys. Lett. vol. 69, 503 (1996). [44] L. W. Tu, Y. C. Lee, S. J. Chen, I. Lo, D. Stocker and E. F. Schubert, “Yellow luminescence depth profiling on GaN epifilms using reactive ion etching,” Appl. Phys. Lett. vol. 73, 2802 (1998). [45] R. H. Horng, D. S. Wuu, S. C. Wei, C. Y. Tseng, M. F. Huang, K. H. Chang, P. H. Liu, and K. C. Lin, “Wafer-bonded AlGaInP/Au/AuBe/SiO2/Si light-emitting diodes,” Jpn. J. Appl. Phys. vol. 39, 2357 (2000). [46] S. S. Schad, T, M. Scherer, M. Seyboth, and V. Schwegler, “Extraction efficiency of GaN-based LEDs,” Phys. Stat. Sol. (a), vol. 188, 127 (2001). [47] T. Mukai, M. Yamada, and S. Nakamura, “Current and temperature dependences of electroluminescence of InGaN-based UV/blue/green light-emitting diodes,” Jpn. J. Appl. Phys. vol. 37, L1358 (1998).
摘要: 寬能隙氮化鎵半導體已經成功的實現在藍綠光發光二極體、藍光雷射二極體以及紫外光源等。而用來做為基板的藍寶石由於本身為絕緣體且熱傳導特性不佳,因此將氮化鎵元件磊晶層從藍寶石基板剝離並轉移到具有高電導率、高熱傳導率的金屬基板來製作氮化鎵發光元件即是本論文主要的研究課題之一。在本論文利用兩種不同的基板轉移技術來製作雷射剝離氮化鎵薄膜發光二極體接合於銅基板,並與一般直接成長於藍寶石基板之氮化鎵發光二極體做比較。在垂直導通型發光二極體結構中,我們發現經轉移到銅基板之氮化鎵發光二極體具有高操作電流的特性,其發光強度在500 mA 時有2.1倍的提升,且其接面溫度在300 mA 時較傳統藍寶石結構發光二極體下降了56˚C,此結果顯示銅基板具有較佳的散熱效果。而在低溫黏貼型發光二極體結構,我們發現其較適合在小電流下操作,在20 mA時其發光強度相較於傳統藍寶石結構發光二極體提升了2.5倍,由裸晶粒之元件光場圖來看,用來接合的透明環氧樹脂可增加其側向光的取出,且因環氧樹脂的折射係數介於氮化鎵與金屬鏡面之間,因此三層搭配的結果恰可形成一高反射鏡面的結構,更能有效的將向下發出的光反射回出光面上。經由本論文之研究可知,金屬基板型氮化鎵發光二極體結構可增加元件外部量子效率,同時由於銅基板具有較佳的散熱效果,因而可提高操作電流並在高功率氮化鎵發光元件上將具有實質上的應用價值。而低溫黏貼型發光二極體則較適合於低功率元件之應用。
Group III nitride compound semiconductors have been widely used in optoelectronics and high-temperature electronic devices because of their wide band gap, chemical stability, and high temperature stability. These devices have been used extensively in various applications such as full color displays, back lighting in liquid-crystal displays, and exterior automotive lighting. Due to the poor electrical and thermal conductivity of the sapphire substrate, the GaN epilayer structure transferring to an electrically and thermally conducting substrate becomes an important issue in high power applications. In this thesis, we fabricated the GaN LED structures and transferred to a copper (Cu) substrate by laser lift-off (LLO) process using two different methods; namely vertical-conducting (VC) and glue-bonding (GB) techniques. It was found that the luminous intensity of VC-LED can increase to about 2.1 times in magnitude as compared with that of the conventional GaN/sapphire LED at 500 mA, where the junction temperature can decrease by 56˚C at 300 mA. For the GB-LED, the luminous intensity also showed 2.5 times in magnitude better than that of the GaN/sapphire LED at 20mA. The enhanced output power could be attributed to the formation of an omni-directional reflector between GaN and Cu to improve the downward photons back to the surface effectively. The results indicate that the VC GaN/mirror/Cu LEDs are suitable for high power application while the GB GaN/mirror/Cu LEDs show an essential assistance in enhancing the light output power for low power devices.
URI: http://hdl.handle.net/11455/11139
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.