Please use this identifier to cite or link to this item:
標題: 在TiN/Si基材上製備奈米多孔氧化鋁及其應用評估研究
Fabrication and applications of nanoporous anodic aluminum oxide on TiN/Si substrates
作者: 黃惠暖
Huang, Huei Nuan
關鍵字: Al film
Cu nanowire
Cu2O nanowire
出版社: 材料工程學系所
引用: [1] C.Y. Liu, A. Datta, N. W. Liu, C.Y. Peng, and Y. L. Wang, “Order-disorder transition of anodic alumina nanochannel arrays grown under the guidance of focused-ion-beam patterning,” Appl. Phys. Lett., 84 (2004) 2509. [2] C. Y. Liu, A. Datta, and Y. L. Wang, “Ordered anodic alumina nanochannels on focused-ion-beam-prepatterned aluminum surfaces,” Appl. Phys. Lett., 78 (2001) 120. [3] H. Masuda, H. Yamada, M. Satoh, H. Asoh, M. Nakao, and T. Tamamura, “Highly ordered nanochannel-array architecture in anodic alumina,” Appl. Phys. Lett., 71 (1997) 2770. [4] H. Masuda, M. Yotsuya, M. Asano, K. Nishio, M. Nakao, A. Yokoo, and T. Tamamura, “Self-repair of ordered pattern of nanometer dimensions based on self-compensation properties of anodic porous alumina,” Appl. Phys. Lett., 78 (2001) 826. [5] D. Routkevitch, A. N. Govyadinov, and P. P. Mardilovich, “High aspect ratio, high resolution ceramic,” MEMS., 2 (2000) 39. [6] H. Chil and J. M. Xu, “Nanometric superlattices: non-lithographic fabrication, materials, and prospects,” Mater. Sci. Eng., R43 (2004) 103. [7] G. E. Thompson and G. C. Wood, “Porous anodic film formation on aluminum,” Nature, 298 (1981) 230. [8] D. A. Brevno, G. V. Rama Rao, G. P. López, and P. B. Atanassov, “Dynamics and temperature dependence of etching processes of porous and barrier aluminum oxide layers,” Electrochim. Acta., 49 (2004) 2487. [9] J. S. Suh and J. S. Lee, “Highly ordered two-dimensional carbon nanotube arrays,” Appl. Phys. Lett., 75 (1999) 2047. [10] F. H. Kaatz, M. P. Siegal, D.L. Overmyer, P. P. Provencio, and J. L. Jackson, “Diameter control and emission properties of carbon nanotubes grown using chemical vapor deposition,” Mater. Sci. Eng., C23 (2003) 141. [11] Q. Zhang, Y. Li, D. Xu, and Z. Gu, “Preparation of silver nanowire arrays in anodic aluminum,” J. Mater. Sci. Lett., 20 (2001) 925. [12] A. J. Yin, J. Li, W. Jian, A. J. Bennett, and J. M. Xu, “Fabrication of highly ordered metallic nanowire arrays by electrodeposition,” Appl. Phys. Lett., 79 (2001) 1039. [13] 余錦智,“以低溫水熱法及化學電池作用於氮化鈦膜上製備鈦酸鋇膜之研究”,國立中興大學材料工程學系碩士論文,2005。 [14] S. H. Kim, D. S. Chung, K. C. Park, K. B. Kim, and S. H. Min, “A comparative study of film properties of chemical vapor deposited TiN films as diffusion barriers for Cu metallization,” J. Electrochem. Soc., 146 (1999) 1455. [15] J. S. Byun, K. G. Rha, J. J. Kim, and W. S. Kim, “Formation of a large grain sized Tin layer using TiNx, the epitaxial continuity at the Al/TiN interface, and its electromigration endurance in multilayered intercomnection,” J. Apply. Phys., 78 (1995) 1719. [16] Yong, B. C. Zhang, C. S. Seet, A. See, L. Chan, J. Sudijono, S. L. Liew, C. H. Tung, and H. C. Zeng, “Cool copper template for the formation of oriented nanocrystalline α-tantalum,” J. Phys. Chem. B, 106 (2002) 12366. [17] J. F. Shackelford, W. Alexander, and J. S. Park, CRC practical handbook of materials selection, CRC Press, Boca Raton, (1995) [18] J. Oh, Y. Tak, and J. Lee, “Electrodeposition of Cu2O nanowires using nanoporous alumina template,” Electrochem. Solid-State Lett., 7 (2004) C27. [19] 楊志忠,新世紀奈米級光電材料結構—光子晶體,物理雙月刊,廿三卷六期,647,2001。 [20] 陳啟昌,張正陽,張利銘,T. Pertsch,侯佳宏,M. –P. Bernal,羅仕守,邱華恭,蕭輔力,A. Khelif,欒丕綱,丁于真,詹益仁,棊振瀛,李建階,光子晶體的過去、現在與未來,台灣奈米月刊,No.5.2006。 [21] 葉明仁,表面處理工業之發展,傳勝出版社,1994。 [22] G. E. Thompson, R. C. Furneaux, G. C. Wood, J. A. Richardson, and J. S. Goode, “Nucleation and growth of porous anodic films on aluminum,” Nature, 272 (1978) 433. [23] V. P. Parkhutik and V. I. Shershulsky, “Theoretical modelling of porous oxide growth on aluminum,” J. Phys. D: Appl. Phys., 25 (1992) 1258. [24] H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science, 268 (1995) 1466. [25] F. Li, L. Zhang, and R. M. Metzger, “On the growth of highly ordered pores in anodized aluminum oxide,” Chem. Mater., 10 (1998) 2470. [26] G. E. Thompson, “Porous anodic alumina: Fabrication, characterization and applications,” Thin Solid Films, 297 (1997) 192. [27] O. Jessensky, F. Müller, and U. Gösele, “Self-organized formation of hexagonal pore arrays in anodic alumina,” Appl. Phys. Lett., 72 (1998) 1173. [28] A. P. Li, F. Müller, A. Birner, K. Nielsch, and U. Gösele,“Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina,” J. Appl. Phys., 84 (1998) 6023. [29] X. Wang and G. R. Han, “Fabrication and characterization of anodic aluminum oxide template,” Microelectron. Eng., 66 (2003) 166. [30] H. Masuda, M. Ohya, H. Asoh. M. Nakao, M. Nohtomi, and T. Tamamura, “Photonic crystal using anodic porous alumina,” Jpn. J. Appl. Phys., 38 (1999) L 1403. [31] T. Iwasaki, T. Motoi, and T. Den, “Multiwalled carbon nanotubes growth in anodic alumina nanoholes,” Appl. Phys. Lett., 75 (1999) 2044. [32] D. Crouse and Y. H. Lo, “Self-ordered pore structure of anodized aluminum on silicon and pattern transfer,” Appl. Phys. Lett., 76 (2000) 49. [33] B. M. I. van der Zande, M. R. Böhmer, L.G. J. Fokkink, and C. Schönenberger, “Colloidal dispersions of gold rods: synthesis and optical properties,” Langmuir, 16 (2000) 451. [34] W. Hu, D. Gong, and Z. Chen, “Growth of well-aligned carbon nanotube arrays on silicon substrates using porous alumina film as a nanotemplate,” Appl. Phys. Lett., 79 (2001) 30833. [35] S. H. Jeong, H. Y. Hwang, and K. H. Lee, “Template-based carbon nanotubes and their application to a field emitter,” Appl. Phys. Lett., 78 (2001) 2052. [36] Y. Yang, H. Chen, Y. Mei, J. Chen, X. Wu, and X. Bao, “Anodic alumina template on Au/Si substrate and preparation of CdS nanowires,” Solid State Cmmun., 123 (2002) 279. [37] S. Z. Chu, K. Wada, S. Inoue, and S. I. Todoroki, “Fabrication and characteristica of ordered Ni nanostructure on glass by aondization and direct current electrodeposition,” Chem. Mater., 14 (2002) 4595. [38] J. Zou, L. Pu, X. Bao, and D. Feng, “Branchy alumina nanotubes,” Appl. Phys. Lett., 80 (2002) 1079. [39] A. Cai, H. Zhang, H. Hua, and Z. Zhang, “Direct formation of self-assembled nanoporous aluminum oxide on SiO2 and Si substrates,” Nanotechnology, 13 (2002) 627. [40] Y. Yang, H. Chen, Y. Mei, J. Chen, X. Wu, and X. Bao, “CdS nanocrystallites prepared by chemical and physical templates,” Acta Materialia, 50 (2002) 5085. [41] P. L. Chen and C. T. Kuo, “Self-organized titanium oxide nanodot arrays by electrochemical anodization,” Appl. Phys. Lett., 82 (2003) 2796. [42] P. G. Miney, P. E. Colavita, M. V. Schiza, R. J. Priore, F. G. Haibach, and M. L. Myrick, “Growth and characterization of a porous aluminum oxide film formed on an electrically insulating support,” Electrochem. Solid-State Lett., 6 (2003) B42. [43] H. Asoh, M. Matsuo, M. Yoshihama, and S. Ono, “Transfer of nanoporous pattern of anodic porous alumina into Si substrate,” Appl. Phys. Lett., 83 (2003) 4408. [44] M. S. Sander and L. S. Tan, “Nanoparticle arrays on surfaces fabricated using anodic alumina films as templates,” Adv. Funct. Mater., 13 (2003) 393. [45] S. H. Jeong and K. H. Lee, “Fabrication of aligned and patterned carbon nanotube field emitters using the anodic aluminum oxide nano-template on a Si wafer,” Synth. Met., 139 (2003) 385. [46] M. J. Kim, J. H. Choi, J. B Park, S. K. Kim, J. B. Yoo, and C.Y. Park, “Growth characteristics of carbon nanotubes via aluminum nanopore template on Si substrate using PECVD,” Thin Solid Films, 435 (2003) 312. [47] S. Inoue, S. H. Chu, K. Wada, D. Li, and H. Haneda, “New roots to formation of nanostructures on glass surface through anodic oxidation of sputtered aluminum,” Science and Technology of Advanced Materials, 4 (2003) 269. [48] M. J. Kim, T. Y. Lee, J. H. Choi, J. B. Park, J. S. Lee, S. K. Kim, J. B. Yoo, and C. Y. Park, “Growth of carbon nanotubes with anodic aluminum oxide formed on the catalytic metal-coated Si substrate,” Diamond Relat. Mater., 12 (2003) 870. [49] P. L. Chen, J. K. Chang, C. T. Kuo, and F. M. Pan, “Anodic aluminum oxide template assisted growth of vertically aligned carbon nanotube arrays by ECR-CVD,” Diamond Relat. Mater., 13 (2004) 1949. [50] Y. F. Mei, G. G. Siu, Y. Yang, R. K. Y. Fu, T. F. Hung, P. K. Chu, and X. L. Wu, “Cu oxide nanowire array growth on Si-based SiO2 nanoscale islands via nanochannels,” Acta Materilia, 52 (2004) 5051. [51] Y. D. Wang, S. J. Chua, M. S. Sander, P. Chen, S. Tripathy, and C. G. Fonstad,“Fabrication and properties of nanoporous GaN films,” Appl. Phys. Lett., 85 (2004) 816. [52] O. J. Lee, S. K. Hwang, S. H. Jeong, P. S. Lee, and K. H. Lee, “Synthesis of carbon nanotubes with identical dimensions using an anodic aluminum oxide template on a silicon wafer,” Synth. Met., 148 (2005) 263. [53] M. Tian, S. Xu, J. Wang, N. Kumar, E. Wertz, Q. Li, P. M. Campbell, M. H. W. Chan, and T. E. Mallouk, “Penetrating the oxide barrier in situ and separating freestanding porous anodic alumina films in one step,” Nano Letters, 5 (2005) 697. [54] H. Zhang, Z. Chen, T. Li, and K. Saito, “Fabrication of a one-dimensional array of nanopores horizontally aligned on a Si substrate,” J. Nanosci. Nanotech., 5 (2005) 1745. [55] Z. Chen and H. Zhang, “Mechanisms for formation of a one-dimensional horizontally anodic aluminum oxide nanopore array on a Si substrate,” J. Electrochem. Soc., 152 (2005) D227. [56] P. L. Chen, J. K. Chang, F. M. Pan, and C. T. Kuo, “Tube number density control of carbon nanotubes on anodic aluminum oxide template,” Diamond Relat. Mater., 14 (2005) 804. [57] W. J. Yu, Y. S.Cho, G. S. Choi, and D. Kim, “Patterned carbon nanotube field emitter using the regular array of an anodic aluminum oxide template,” Nanotechnology, 16 (2005) S291. [58] S. K. Jwang, J. Lee, S. H. Jeong, P.S. Lee, and K. H. Lee, “Fabrication of carbon nanotube emitters in an anodic aluminum oxide nanotemplate on a Si wafer by multi-step anodization,” Nanotechnology, 16 (2005) 850. [59] T. Shimizu, M. Nagayanagi, T. Ishida, O. Sakata, T. Oku, H. Sakaue, T. Takahagi, and S. Shingubara, “Epitaxial growth of Cu nanodot arrays using an AAO template on a Si substrate,” Electrochem. Solid-State Lett,, 9 (2006) J13. [60] Y. C. Kong, D. P. Zhang, B. Zhang, W. Fang, and S. Q. Feng, “Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach,” Appl. Phys. Lett., 78 (2001) 407. [61] Y. Wang, L. Zhang, C. Liang, G. Wang, and X. Peng, “Catalytic growth and photoluminescence properties of semiconductor single-crystal ZnS nanowires,” Chem. Phys. Lett., 357 (2002) 314. [62] D. Wang, Q. Wang, A. Javey, R. Tu, and H. Dai, “Germanium nanowire field-effect transistors with SiO2 and high-κ HfO2 gate dielectrics,” Appl. Phys. Lett., 83 (2003) 2432. [63] F. Schlottig and M. Textor, “Template synthesis of SiO2 nanostructures,” J. Mater. Sci. Lett., 18 (1999) 599. [64] Y. Zhou and H. Li, “Sol-gel template synthesis of highly ordered LiCo0.5Mn0.5O2 nanowire arrays and their structural properties,” J. Solid State Chem., 165 (2002) 247. [65] H. Pan, H. Sun, C. Poh, Y. Feng, and J. Lin, “Single- crystal growth of metallic nanowires with preferred orientation,” Nanotechnology, 16 (2005) 1559. [66] J. Oh, Y. Tak, and J. Lee, “Electrochemically deposited nanocolumnar junction of Cu2O and ZnO on Ni nanowire,” Electrochem. Solid-State Lett., 8 (2005) C81. [67] M. E. Toimil Molares, V. Buschmann, D. Dobrev, R. Neumann, R. Scholz, I. U. Schuchert, and J. Vetter, “Single-crystalline copper nanowires produced by electrochemical deposition in polymeric ion track membrances,” Adv. Mater., 13 (2001) 62. [68] T. Gao, G. Meng, Y. Wang, S. Sun, and L. Zhang, “Electrochemical synthesis of copper nanowires,” J. Phys.: Condens. Matter, 14 (2002) 355. [69] M. E. Toimil Molares, E. M. Höhberg, Ch. Schaeflein, R. H. Blick, R. Neumann, and C. Trautmann, “Electrical characterization of electrochemically grown single copper nanowires,” Appl. Phys. Lett., 82 (2003) 2139. [70] Y. T. Pang, G.W. Meng, Y. Zhang, Q. Fang, and L. D. Zhang,“Copper nanowire arrays for infrared polarizer,” Appl. Phys. A, 76 (2003) 533. [71] Y. Konishi, M. Motoyama, H. Matsushima, Y. Fukunaka, R. Ishii, and Y. Ito, “Electrodeposition of Cu nanowire arrays with a template,” J. Electroanalytical Chem., 559 (2003)149. [72] Y. Wang, J. Yang, C. Ye, X. Fang, and L. Zhang, “Thermal expansion of Cu nanowire arrays,” Nanotechnology, 15 (2004) 1437. [73] P. E. de Jongh, D. Vanmaekelbergh, and J. J. Kelly, “Cu2O: Electrodeposition and characterization,” Chem. Mater., 11 (1999) 3512. [74] E. W. Bohannan, L.Y. Huang, F. S. Miller, M. G. Shumsky, and J. A. Switzer, “In situ electrochemical quartz crystal microbalance study of potential oscillations during the electrodeposition of Cu/Cu2O layered nanostructures,” Langmuir, 15 (1999) 813. [75] R. Liu, F. Oba, E. W. Bohannan, F. Ernst, and A. Switzer, “Shape control in epitaxial electrodeposition: Cu2O nanocubes on InP (001),” Chem. Mater., 15 (2003) 4882. [76] R. Liu, E. A. Kulp, F. Oba, E. W. Bohannan, F. Ernst, and J. A. Switzer, “Epitaxial electrodeposition of high-aspect-ratio Cu2O (110) nanostructures on InP (111),” Chem. Mater., 17 (2005) 725. [77] Y. C. Chieh, W. Z. Lo, and F. -H. Lu, “Microstructure evolution of ZrN films annealed in vacuum,” Surf. Coat. Technol., 200 (2006) 3336. [78] L. Z. Z. Evin and S. Lungo, “Reactive-sputter-deposited TiN films on glass substrate,” Thin Solid Film, 197 (1991) 117. [79] Eden Prairie, Minn., Handbook of X-ray photoelectron spectroscopy. Physical Electronics Division, Perkim-Elmer Corporation, United States of America, (1999) 40-61.
摘要: 本研究主要是利用Al/TiN/Si製備多孔氧化鋁(AAO)模板。實驗中分別使用磷酸與硫酸混合溶液,於40℃定電壓20 V (製程I)、0.3 M草酸,於室溫定電壓40 V (製程II),以及二階段製程(先製程I再製程II)進行陽極氧化形成奈米多孔氧化鋁 (AAO) 模板,並藉由場發射掃描式電子顯微鏡(FE-SEM)觀察AAO之微結構,以X光光電子能譜儀 (XPS) 分析氧化物之化學組態,並探討其應用。 由微結構形貌及化學組態分析可得知,原始鋁膜厚度約1.55 μm,經製程I陽極氧化反應後,可形成孔徑約35 nm厚度約2.77 μm之含硫酸根及磷酸根奈米多孔氧化鋁,其孔徑及厚度分別為經製程II所形成氧化鋁模板之1.4及1.35倍,且多孔氧化鋁與緻密氧化鋁厚度比值,隨孔洞大小增加而增加。另外經二階段製程陽極氧化可形成雙層奈米多孔氧化鋁,上層結構為由製程I所形成含硫酸根之氧化鋁,而下層則為製程II所生成。 在應用方面則是以製程II所形成之氧化鋁模板 (AAO/TiN/Si),先以負偏壓去除阻障層後,接著以電化學直流沈積方式,分別於酸性 (pH=4.5~5) 硫酸銅溶液成長奈米銅線及鹼性 (pH=12) 硫酸銅溶液成長奈米氧化亞銅線。以EDS及X光繞射儀分析所成長之奈米銅及氧化亞銅線其元素成分及結晶相,並探討所施加之電壓及反應時間對奈米線長度之影響。在定電壓0.1 V及酸性條件下,電鍍1小時後可獲得直徑約85 nm及長度約950 nm之奈米銅線,而所成長銅線之長度隨電鍍時間增加而呈線性增加。另一方面,在電壓為0.5 V及鹼性條件下,電鍍20分鐘後則可獲得直徑約80 nm及長度約1.2 μm之奈米氧化亞銅線,在相同電鍍時間下,氧化亞銅線之長度隨著施加電壓上升而迅速增加。 此外,本研究亦將在玻璃基材上鍍著鋁薄膜(Al/Glass),並以10 wt%磷酸、0.3 M草酸及15 wt%硫酸溶液進行陽極氧化形成透明之多孔氧化鋁模板,以可見紫外光譜儀 (UV-VIS) 量測200-1100nm波長範圍之反射率,探討週期性孔洞大小及氧化層厚度對光學性質之影響。經光譜圖觀察得知,本實驗所得之多孔氧化鋁,其反射率具週期性變化,在紫外光波長範圍均有大於20 %之反射率具有抗紫外線之功能,其中使用草酸溶液所形成的AAO模板具有最大之反射率;而相同孔洞週期之多孔氧化鋁,隨氧化層厚度增加,可見光之反射波長往長波長區段移動。
In this research, nanoporous anodic aluminum oxide (AAO) templates were fabricated by anodizing Al films on TiN/Si substrates. Two kinds of processes were employed to prepare AAO templates with different pore sizes. One was using H3PO4/H2SO4/DI-water mixture as an electrolyte at 40 ℃ with 20 V applied voltage (process I), and the other one was employing 0.3 M H2C2O4 at room temperature with 40 V applied voltage (process II). Additionally, double-layered AAO templates were fabricated with two-step anodic oxidation (processes I + II). Field-emission scanning electron microscopy (FE-SEM) was used to investigate the resultant microstructure of AAO and X-ray photoelectron spectroscopy (XPS) was utilized to identify the chemical state of the oxide. The thickness of as-deposited Al film was 1.55 μm. From process I AAO consisted of SO42-and PO43- ions and exhibited a diameter of 35 nm and thickness of 2.77 μm, which were 1.4 and 1.35 times larger than that obtained from process II. The thickness ratios of AAOs increased with increasing pore sizes. In the double-layered structure made by a two-step possess, the upper layer of AAO was formed from process I and lower layer was produced from process II. As for application, process II was used to prepare AAO/TiN/Si and the barrier was removed applying a reverse-bias voltage. Afterwards, copper nanowires and cuprous oxide nanowires were grown by electrochemical deposition in acidic (pH=4.5~5) and basic (pH=12) copper sulphate solution. EDS was used to analyze the resultant elements of nanowires and X-ray diffraction was utilized to identify the crystalline phase. Moreover, influences of the applied voltage and reaction time on the length of nanowires were also discussed. Cu nanowires with a diameter of 85 nm and a length of 950 nm could be obtained after electrochemical deposition for 1 h in acidic electrolyte at 0.1 V. Based on same applied voltage, the lengths of Cu nanowires increased linearly with increasing reaction time. Moreover, 80 nm in diameter and 1.2 μm in length of Cu2O nanowires could be obtained after deposition for 20 min in basic electrolyte at 0.5 V. Based on same deposited time, the lengths of Cu2O nanowires increased quickly with increasing applied voltage. Al films were also deposited on glass substrates to fabricate transparent AAO templates by anodic oxidization used in this study. Three different electrolytes, 10 wt% H3PO4, 0.3 M H2C2O4, and 15 wt% H2SO4 were employed to prepare AAO templates with different pore sizes. Influences of the pore size and the thickness of oxide on optical properties were investigated by using ultraviolet and visible spectrophotometer (UV-VIS) to measure the reflectivity of AAO films in wavelengths ranging from 200 to 1100nm. The spectra revealed all AAO templates possessed periodic reflectivity and larger than 20 % in the ultraviolet range. The templates made from oxalic acid solution have highest reflectivity. Moreover, the red shift of the reflectivity in the visible light range increased with increasing thickness of AAO films that have similar pore sizes.
Appears in Collections:材料科學與工程學系



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.